2-DE-based proteomic investigation of the saliva of the Amazonian triatomine vectors of Chagas disease: Rhodnius brethesi and Rhodnius robustus.

[1]  J. Ribeiro,et al.  Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. , 2011, Journal of proteome research.

[2]  Yong Li,et al.  Post‐translation modification of proteins in tears , 2010, Electrophoresis.

[3]  J. Valenzuela,et al.  A repertoire of the dominant transcripts from the salivary glands of the blood-sucking bug, Triatoma dimidiata, a vector of Chagas disease. , 2010, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[4]  V. Wasinger,et al.  Tear lipocalin is the predominant phosphoprotein in human tear fluid. , 2010, Experimental eye research.

[5]  C. Galvão,et al.  Classification, evolution, and species groups within the Triatominae. , 2009, Acta tropica.

[6]  A. Shevchenko,et al.  Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian Pine (Araucaria angustifolia). , 2009, Journal of proteomics.

[7]  P. Roepstorff,et al.  On-target sample preparation of 4-sulfophenyl isothiocyanate-derivatized peptides using AnchorChip Targets. , 2008, Journal of mass spectrometry : JMS.

[8]  J. Andersen,et al.  An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. , 2008, Insect biochemistry and molecular biology.

[9]  E. Massad The elimination of Chagas' disease from Brazil , 2007, Epidemiology and Infection.

[10]  A. Shevchenko,et al.  The saliva proteome of the blood-feeding insect Triatoma infestans is rich in platelet-aggregation inhibitors , 2007 .

[11]  F. A. Monteiro,et al.  Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. , 2007, Memorias do Instituto Oswaldo Cruz.

[12]  J. Ribeiro,et al.  The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae). , 2007, Insect biochemistry and molecular biology.

[13]  M. H. Pereira,et al.  Competitive displacement in Triatominae: the Triatoma infestans success. , 2006, Trends in parasitology.

[14]  Nan Wang,et al.  Characterization of human tear proteome using multiple proteomic analysis techniques. , 2005, Journal of proteome research.

[15]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[16]  L. Diotaiuti,et al.  Testing the sister-group relationship of the Rhodniini and Triatomini (Insecta: Hemiptera: Reduviidae: Triatominae). , 2005, Molecular phylogenetics and evolution.

[17]  J. Andersen,et al.  The role of salivary lipocalins in blood feeding by Rhodnius prolixus. , 2005, Archives of insect biochemistry and physiology.

[18]  T. Vernet,et al.  Triatoma infestans Apyrases Belong to the 5′-Nucleotidase Family* , 2004, Journal of Biological Chemistry.

[19]  J. Andersen,et al.  Exploring the sialome of the blood-sucking bug Rhodnius prolixus. , 2004, Insect biochemistry and molecular biology.

[20]  J. Andersen,et al.  Inhibition of Hemostasis by a High Affinity Biogenic Amine-binding Protein from the Saliva of a Blood-feeding Insect* , 2003, The Journal of Biological Chemistry.

[21]  J. Dias,et al.  The impact of Chagas disease control in Latin America: a review. , 2002, Memorias do Instituto Oswaldo Cruz.

[22]  Hanno Steen,et al.  Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. , 2002, Trends in biotechnology.

[23]  O. Fernandes,et al.  Emerging Chagas disease in Amazonian Brazil. , 2002, Trends in parasitology.

[24]  C. Lazoski,et al.  Allozyme relationships among ten species of Rhodniini, showing paraphyly of Rhodnius including Psammolestes , 2002, Medical and veterinary entomology.

[25]  J. Andersen,et al.  Biochemical and functional characterization of recombinant Rhodnius prolixus platelet aggregation inhibitor 1 as a novel lipocalin with high affinity for adenosine diphosphate and other adenine nucleotides. , 2002, Biochemistry.

[26]  P. Bork,et al.  Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. , 2001, Analytical chemistry.

[27]  J. Andersen,et al.  Kinetics and equilibria in ligand binding by nitrophorins 1-4: evidence for stabilization of a nitric oxide-ferriheme complex through a ligand-induced conformational trap. , 2000, Biochemistry.

[28]  J. Andersen,et al.  Purification, Cloning, Expression, and Mechanism of Action of a Novel Platelet Aggregation Inhibitor from the Salivary Gland of the Blood-sucking Bug, Rhodnius prolixus * , 2000, The Journal of Biological Chemistry.

[29]  C. Beard,et al.  Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. , 2000, The American journal of tropical medicine and hygiene.

[30]  N. Blom,et al.  Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. , 1999, Journal of molecular biology.

[31]  F Gharahdaghi,et al.  Mass spectrometric identification of proteins from silver‐stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity , 1999, Electrophoresis.

[32]  E. Nordhoff,et al.  Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. , 1999, Journal of mass spectrometry : JMS.

[33]  A. Romanha,et al.  Salivary heme proteins distinguish Rhodnius prolixus from Rhodnius robustus (Hemiptera: Reduviidae: Triatominae). , 1998, Acta tropica.

[34]  P. Walsh,et al.  Nitrophorin-2: a novel mixed-type reversible specific inhibitor of the intrinsic factor-X activating complex. , 1998, Biochemistry.

[35]  J. Sun,et al.  Characterization and cDNA cloning of a hemoprotein in the salivary glands of the blood-sucking insect, Rhodnius prolixus. , 1998, Insect biochemistry and molecular biology.

[36]  R. Huber,et al.  Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Sun,et al.  Purification, Characterization and cDNA Cloning of a Novel Anticoagulant of the Intrinsic Pathway, (Prolixin-S), from Salivary Glands of the Blood Sucking Bug, Rhodnius prolixus , 1996, Thrombosis and Haemostasis.

[38]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[39]  B. Haendler,et al.  Triabin, a Highly Potent Exosite Inhibitor of Thrombin (*) , 1995, The Journal of Biological Chemistry.

[40]  J. A. Guimarães,et al.  Purification and characterization of prolixin S (nitrophorin 2), the salivary anticoagulant of the blood-sucking bug Rhodnius prolixus. , 1995, Biochemical Journal.

[41]  R. Nussenzveig,et al.  Purification, Partial Characterization, and Cloning of Nitric Oxide-carrying Heme Proteins (Nitrophorins) from Salivary Glands of the Blood-sucking Insect Rhodnius prolixus(*) , 1995, The Journal of Biological Chemistry.

[42]  F. Walker,et al.  High affinity histamine-binding and antihistaminic activity of the salivary nitric oxide-carrying heme protein (nitrophorin) of Rhodnius prolixus , 1994, The Journal of experimental medicine.

[43]  F. Walker,et al.  Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. , 1993, Science.

[44]  H. Gross,et al.  Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels , 1987 .