Optimization of instrument matrix for Mueller matrix ellipsometry based on partial elements analysis of the Mueller matrix.

We consider the Mueller matrix ellipsometry (MME) measuring the ellipsometric parameters of the isotropic sample and the anisotropic sample under certain conditions in the presence of either Gaussian additive noise or Poisson shot noise. In this case, the ellipsometric parameters only relate to partial elements in Mueller matrix, and we optimize the instrument matrices of polarization state generator (PSG) and analyzer (PSA) to minimize the total measurement variance for these elements, in order to decrease the variance of the estimator of ellipsometric parameters. Compared with the previous instrument matrices, the optimal instrument matrices in this paper can effectively decrease the measurement variance and thus statistically improve the measurement precision of the ellipsometric parameters. In addition, it is found that the optimal instrument matrices for Poisson shot noise are same to those for Gaussian additive noise, and furthermore, the optimal instrument matrices do not depend on the ellipsometric parameters to be measured, which means that the optimal instrument matrices of MME proposed in this paper can be widely applied in various cases.

[1]  François Goudail,et al.  Maximum likelihood method for calibration of Mueller polarimeters in reflection configuration. , 2013, Applied optics.

[2]  Xiuguo Chen,et al.  Optimal configuration for the dual rotating-compensator Mueller matrix ellipsometer , 2013, Other Conferences.

[3]  Chuanwei Zhang,et al.  Towards understanding the detection of profile asymmetry from Mueller matrix differential decomposition , 2015 .

[4]  Weiqi Li,et al.  Depolarization artifacts in dual rotating-compensator Mueller matrix ellipsometry , 2016 .

[5]  Nan Zeng,et al.  Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. , 2014, Biomedical optics express.

[6]  B. Lamouroux,et al.  Automatic measurement of the Stokes vector of light. , 1979, Applied optics.

[7]  François Goudail,et al.  Performance of Maximum Likelihood estimation of Mueller matrices taking into account physical realizability and Gaussian or Poisson noise statistics. , 2013, Optics express.

[8]  Antonello De Martino,et al.  Application of Spectroscopic Ellipsometry and Mueller Ellipsometry to Optical Characterization , 2012, Applied spectroscopy.

[9]  François Goudail,et al.  On the performance of the physicality-constrained maximum-likelihood estimation of Stokes vector. , 2013, Applied optics.

[10]  Weiqi Li,et al.  Accurate alignment of optical axes of a biplate using a spectroscopic Mueller matrix ellipsometer. , 2016, Applied optics.

[11]  Sergey N. Savenkov,et al.  Mueller-matrix model of an inhomogeneous, linear, birefringent medium: Single scattering case , 2007 .

[12]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[13]  Tiegen Liu,et al.  Optimal distribution of integration time for intensity measurements in degree of linear polarization polarimetry. , 2016, Optics express.

[14]  Sergey N. Savenkov,et al.  Optimization and structuring of the instrument matrix for polarimetric measurements , 2002 .

[15]  F. Bijkerk,et al.  Ellipsometry with randomly varying polarization states. , 2011, Optics express.

[16]  Nan Zeng,et al.  A study on forward scattering Mueller matrix decomposition in anisotropic medium. , 2013, Optics express.

[17]  S. Krishnan,et al.  Mueller-matrix ellipsometry using the division-of-amplitude photopolarimeter: a study of depolarization effects. , 1994, Applied optics.

[18]  Zhipeng Wang,et al.  Design and optimization of partial Mueller matrix polarimeters. , 2010, Applied optics.

[19]  A M Weiner,et al.  Fast wavelength-parallel polarimeter for broadband optical networks. , 2004, Optics letters.

[20]  Tiegen Liu,et al.  Optimal distribution of integration time for intensity measurements in Stokes polarimetry. , 2015, Optics express.

[21]  Tatiana Novikova,et al.  Metrology of replicated diffractive optics with Mueller polarimetry in conical diffraction , 2007 .

[22]  François Goudail,et al.  Fully tunable active polarization imager for contrast enhancement and partial polarimetry. , 2012, Applied optics.

[23]  Sergey N. Savenkov,et al.  Incomplete active polarimetry: Measurement of the block-diagonal scattering matrix , 2011 .

[24]  Hui Ma,et al.  Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues , 2014, Journal of biomedical optics.

[25]  François Goudail,et al.  Optimal Mueller matrix estimation in the presence of Poisson shot noise. , 2012, Optics express.

[26]  Antonello De Martino,et al.  Optimized Mueller polarimeter with liquid crystals. , 2003, Optics letters.

[27]  R. Chipman,et al.  Optimization of Mueller matrix polarimeters in the presence of error sources. , 2008, Optics express.

[28]  François Goudail,et al.  Simplified calibration procedure for Mueller polarimeter in transmission configuration. , 2014, Optics letters.

[29]  Kenneth C. Ludema,et al.  The influences of roughness on film thickness measurements by Mueller matrix ellipsometry , 1994 .

[30]  Rasheed M. A. Azzam Mueller-matrix ellipsometry: a review , 1997, Optics & Photonics.