Biomechanics of early cardiac development

Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high-resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming.

[1]  P. Frommelt,et al.  Effect of increased pressure on ventricular growth in stage 21 chick embryos. , 1989, The American journal of physiology.

[2]  J. Ottesen,et al.  Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation , 2003, Journal of mathematical biology.

[3]  P. Kilner,et al.  Valveless pump models that laid a false but fortuitous trail on the way towards the total cavopulmonary connection , 2005, Cardiology in the Young.

[4]  P C Hou,et al.  Cardiac output and peripheral resistance during larval development in the anuran amphibian Xenopus laevis. , 1995, The American journal of physiology.

[5]  David Sedmera,et al.  Increased Ventricular Preload Is Compensated by Myocyte Proliferation in Normal and Hypoplastic Fetal Chick Left Ventricle , 2007, Circulation research.

[6]  T. Bartman,et al.  Mechanics and function in heart morphogenesis , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[7]  Larry A Taber,et al.  Cardiac looping in experimental conditions: Effects of extraembryonic forces , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[8]  Kerem Pekkan,et al.  Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo , 2012, Biomechanics and modeling in mechanobiology.

[9]  K L Thornburg,et al.  Embryonic stroke volume and cardiac output in the chick. , 1974, Developmental biology.

[10]  S. Usha,et al.  Peristaltic transport of a biofluid in a pipe of elliptic cross section. , 1995, Journal of biomechanics.

[11]  E. Clark,et al.  Ventricular function and morphology in chick embryo from stages 18 to 29. , 1986, The American journal of physiology.

[12]  Carmen Birchmeier,et al.  Multiple essential functions of neuregulin in development , 1995, Nature.

[13]  David Sedmera,et al.  Cellular changes in experimental left heart hypoplasia , 2002, The Anatomical record.

[14]  P. Krieg,et al.  Xenopus as a model system for vertebrate heart development. , 2007, Seminars in cell & developmental biology.

[15]  Kerem Pekkan,et al.  Aortic Arch Morphogenesis and Flow Modeling in the Chick Embryo , 2009, Annals of Biomedical Engineering.

[16]  Kim Van der Heiden,et al.  Fluid Shear Stress and Inner Curvature Remodeling of the Embryonic Heart. Choosing the Right Lane! , 2008, TheScientificWorldJournal.

[17]  Ronan O'Rahilly,et al.  Developmental Stages in Human Embryos: Revised and New Measurements , 2010, Cells Tissues Organs.

[18]  O. Glaser,et al.  Temperature and Heart Rate in Chick Embryos , 1930 .

[19]  R. Schwartz,et al.  Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning , 2005, Development.

[20]  B. Pelster,et al.  Influence of hypoxia and of hypoxemia on the development of cardiac activity in zebrafish larvae. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[21]  Idit Avrahami,et al.  Computational studies of resonance wave pumping in compliant tubes , 2008, Journal of Fluid Mechanics.

[22]  A. Barry,et al.  The functional significance of the cardiac jelly in the tubular heart of the chick embryo , 1948 .

[23]  J. P. Tinney,et al.  In vivo assessment of embryonic cardiovascular dimensions and function in day-10.5 to -14.5 mouse embryos. , 1996, Circulation research.

[24]  J. Fujimoto Optical coherence tomography for ultrahigh resolution in vivo imaging , 2003, Nature Biotechnology.

[25]  J. D. Humphrey,et al.  Approach to Quantify the Mechanical Behavior of the Intact Embryonic Chick Heart , 2004, Annals of Biomedical Engineering.

[26]  Arthur Veldman,et al.  The role of hemodynamics in the development of the outflow tract of the heart , 2003 .

[27]  B. Keller,et al.  Relationship of simultaneous atrial and ventricular pressures in stage 16-27 chick embryos. , 1995, The American journal of physiology.

[28]  J. Wladimiroff,et al.  Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction , 2004, Journal of Experimental Biology.

[29]  Bradley B Keller,et al.  Regional passive ventricular stress-strain relations during development of altered loads in chick embryo. , 2002, American journal of physiology. Heart and circulatory physiology.

[30]  Jay R Hove,et al.  Quantifying Cardiovascular Flow Dynamics During Early Development , 2006, Pediatric Research.

[31]  A. Moorman,et al.  Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis. , 2002, Circulation research.

[32]  S. Rodbard,et al.  Vascular modifications induced by flow. , 1956, American heart journal.

[33]  F. Beck,et al.  Developmental Stages in Human Embryos. , 1988 .

[34]  B B Keller,et al.  Characterization of embryonic aortic impedance with lumped parameter models. , 1997, The American journal of physiology.

[35]  D Woodrow Benson,et al.  Effect of Heart Rate Increase on Dorsal Aortic Flow before and after Volume Loading in the Stage 24 Chick Embryo , 1989, Pediatric Research.

[36]  Benson Dw,et al.  Heart rate-dependent characteristics of diastolic ventricular filling in the developing chick embryo. , 1995 .

[37]  Ruikang K. Wang,et al.  Quantifying blood flow and wall shear stresses in the outflow tract of chick embryonic hearts. , 2011, Computers & structures.

[38]  Orlando Aristizábal,et al.  Embryonic Heart Failure in NFATc1−/− Mice: Novel Mechanistic Insights From In Utero Ultrasound Biomicroscopy , 2004, Circulation research.

[39]  Takahiro Ishiwata,et al.  Developmental Changes in Ventricular Diastolic Function Correlate With Changes in Ventricular Myoarchitecture in Normal Mouse Embryos , 2003, Circulation research.

[40]  Renato Perucchio,et al.  Patterns of muscular strain in the embryonic heart wall , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[41]  Jerry Westerweel,et al.  In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. , 2006, Journal of biomechanics.

[42]  R E Poelmann,et al.  Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. , 1997, Circulation research.

[43]  W. Crozier,et al.  TEMPERATURE AND FREQUENCY OF CARDIAC CONTRACTIONS IN EMBRYOS OF LIMULUS , 1927, The Journal of general physiology.

[44]  Idit Avrahami,et al.  Resonant pumping in a multilayer impedance pump , 2008 .

[45]  T. Mikawa,et al.  Trabecular myocytes of the embryonic heart require N-cadherin for migratory unit identity. , 1998, Developmental biology.

[46]  J A Epstein,et al.  Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart. , 1998, Development.

[47]  P. Savagner,et al.  Leaving the neighborhood: molecular mechanisms involved during epithelial‐mesenchymal transition , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  Bradley B Keller,et al.  Diastolic Filling Characteristics in the Stage 12 to 27 Chick Embryo Ventricle , 1991, Pediatric Research.

[49]  Jouha Min,et al.  Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography. , 2011, Anatomical record.

[50]  G. Paff,et al.  A MICRO-METHOD FOR DIGITALIS ASSAY , 1940 .

[51]  Kristen Jepsen,et al.  Over-Expression of DSCAM and COL6A2 Cooperatively Generates Congenital Heart Defects , 2011, PLoS genetics.

[52]  Daniel H Turnbull,et al.  Ultrasound biomicroscopy-Doppler in mouse cardiovascular development. , 2003, Physiological genomics.

[53]  A. McCulloch,et al.  Stress-dependent finite growth in soft elastic tissues. , 1994, Journal of biomechanics.

[54]  Z Rychter,et al.  Analysis of relations between aortic arches and aorticopulmonary septation. , 1978, Birth defects original article series.

[55]  Jörg Männer,et al.  On rotation, torsion, lateralization, and handedness of the embryonic heart loop: new insights from a simulation model for the heart loop of chick embryos. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[56]  R. Price,et al.  Three‐dimensional model system of valvulogenesis , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[57]  H. Stalsberg,et al.  Development and ultrastructure of the embryonic heart. II. Mechanism of dextral looping of the embryonic heart. , 1970, The American journal of cardiology.

[58]  O. Glaser,et al.  Temperature and Heart-Rate in Fundulus Embryos , 1929 .

[59]  Elliot L Elson,et al.  Role of actin polymerization in bending of the early heart tube , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[60]  Ruikang K. Wang,et al.  Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation , 2008, Physics in medicine and biology.

[61]  Anna I Hickerson,et al.  The Embryonic Vertebrate Heart Tube Is a Dynamic Suction Pump , 2006, Science.

[62]  B. J. Martinsen,et al.  Reference guide to the stages of chick heart embryology , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[63]  Eunok Jung,et al.  A Mathematical Model of Valveless Pumping: A Lumped Model with Time-Dependent Compliance, Resistance, and Inertia , 2007, Bulletin of mathematical biology.

[64]  J. Hurlé,et al.  Malformations of the semilunar valves produced in chick embryos by mechanical interference with cardiogenesis , 1983, Anatomy and Embryology.

[65]  Kuo-Fen Lee,et al.  Requirement for neuregulin receptor erbB2 in neural and cardiac development , 1995, Nature.

[66]  Jonathan T Butcher,et al.  Hemodynamic patterning of the avian atrioventricular valve , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[67]  Kuniya Abe,et al.  Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest. , 2009, American journal of physiology. Heart and circulatory physiology.

[68]  M. Bruska,et al.  Early trabeculation and closure of the interventricular foramen in staged human embryos. , 2008, Folia morphologica.

[69]  H. Yost,et al.  Structure and function of the developing zebrafish heart , 2000, The Anatomical record.

[70]  Michael W. Jenkins,et al.  Longitudinal Imaging of Heart Development With Optical Coherence Tomography , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[71]  E. Clark,et al.  Effect of conotruncal constriction on aortic-mitral valve continuity in the stage 18, 21 and 24 chick embryo. , 1984, The American journal of cardiology.

[72]  L F Lemanski,et al.  Myocardial cell relationships during morphogenesis in normal and cardiac lethal mutant axolotls, Ambystoma mexicanum. , 1988, The American journal of anatomy.

[73]  Mineo Yasuda,et al.  Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-looping in the embryonic chick heart , 2004, Anatomy and Embryology.

[74]  E. Clark,et al.  Developmental changes in the myocardial architecture of the chick , 1997, The Anatomical record.

[75]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[76]  W H Lamers,et al.  Abnormal Cardiac Conduction and Morphogenesis in Connexin40 and Connexin43 Double-Deficient Mice , 2000, Circulation research.

[77]  S FRIEDMAN,et al.  Aortic atresia with hypoplasia of the left heart and aortic arch. , 1951, The Journal of pediatrics.

[78]  Bradley B Keller,et al.  Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo , 2005, Journal of Experimental Biology.

[79]  Michael W. Jenkins,et al.  Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser. , 2007, Optics express.

[80]  John Lewis Bremer,et al.  The presence and influence of two spiral streams in the heart of the chick embryo , 1932 .

[81]  Anna I Hickerson,et al.  On the resonance of a pliant tube as a mechanism for valveless pumping , 2006, Journal of Fluid Mechanics.

[82]  R E Poelmann,et al.  Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. , 1999, Cardiovascular research.

[83]  Bradley B. Keller,et al.  Embryonic ventricular diastolic and systolic pressure-volume relations , 1994, Cardiology in the Young.

[84]  Michael W. Jenkins,et al.  Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. , 2011, American journal of physiology. Heart and circulatory physiology.

[85]  Kim Van der Heiden,et al.  Monocilia on chicken embryonic endocardium in low shear stress areas , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[86]  P Boesiger,et al.  Gastric emptying and motility: assessment with MR imaging--preliminary observations. , 1998, Radiology.

[87]  M. Jenkins,et al.  In vivo gated 4D imaging of the embryonic heart using optical coherence tomography. , 2007, Journal of biomedical optics.

[88]  A. Sater,et al.  Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6 , 2009, Developmental biology.

[89]  David Sedmera,et al.  Pressure overload alters stress-strain properties of the developing chick heart. , 2003, American journal of physiology. Heart and circulatory physiology.

[90]  Jörg Männer,et al.  High‐resolution in vivo imaging of the cross‐sectional deformations of contracting embryonic heart loops using optical coherence tomography , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[91]  R. Boucek,et al.  Experimental heart‐block in the chick embryo , 1964, The Anatomical record.

[92]  N. Hu,et al.  Hemodynamics of the Stage 12 to Stage 29 Chick Embryo , 1989, Circulation research.

[93]  Jonathan T Butcher,et al.  Quantitative three‐dimensional imaging of live avian embryonic morphogenesis via micro‐computed tomography , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[94]  Robert E Guldberg,et al.  Quantitative volumetric analysis of cardiac morphogenesis assessed through micro‐computed tomography , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[95]  Renato Perucchio,et al.  Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. , 2007, Journal of biomechanical engineering.

[96]  Larry A Taber,et al.  The role of mechanical forces in dextral rotation during cardiac looping in the chick embryo. , 2004, Developmental biology.

[97]  B. Keller,et al.  Ventricular pressure-area loop characteristics in the stage 16 to 24 chick embryo. , 1991, Circulation research.

[98]  M H Paul,et al.  Experimental production of hypoplastic left heart syndrome in the chick embryo. , 1973, The American journal of cardiology.

[99]  Kohtaro Kamino,et al.  Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye , 1981, Nature.

[100]  Nozomi Nishimura,et al.  Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects. , 2010, American journal of physiology. Heart and circulatory physiology.

[101]  Jörg Männer,et al.  Cardiac looping in the chick embryo: A morphological review with special reference to terminological and biomechanical aspects of the looping process , 2000, The Anatomical record.

[102]  W H Lamers,et al.  Persisting zones of slow impulse conduction in developing chicken hearts. , 1992, Circulation research.

[103]  Bradley B. Keller,et al.  Development of Cardiovascular Systems: Embryonic cardiovascular function, coupling, and maturation: A species view , 1998 .

[104]  Gerhart Liebau,et al.  Über ein ventilloses Pumpprinzip , 2004, Naturwissenschaften.

[105]  Paul Steendijk,et al.  Systolic and Diastolic Ventricular Function Assessed by Pressure-Volume Loops in the Stage 21 Venous Clipped Chick Embryo , 2005, Pediatric Research.

[106]  J D Humphrey,et al.  Stress-modulated growth, residual stress, and vascular heterogeneity. , 2001, Journal of biomechanical engineering.

[107]  Michael Wagner,et al.  Signal Transduction in Early Heart Development (II): Ventricular Chamber Specification, Trabeculation, and Heart Valve Formation , 2007, Experimental biology and medicine.

[108]  E. Clark,et al.  Effect of changes in circulating blood volume on cardiac output and arterial and ventricular blood pressure in the stage 18, 24, and 29 chick embryo. , 1990, Circulation research.

[109]  Katherine E Yutzey,et al.  Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[110]  E. Clark,et al.  Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions , 1999, The Anatomical record.

[111]  Ruikang K. Wang,et al.  Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography , 2010, Biomedical optics express.

[112]  Jörg Männer,et al.  How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube , 2010, Developmental dynamics : an official publication of the American Association of Anatomists.

[113]  John W. Weidner,et al.  Mathematical Modeling of Flow-Generated Forces in an In Vitro System of Cardiac Valve Development , 2009, Annals of Biomedical Engineering.

[114]  R E Poelmann,et al.  Altered hemodynamics in chick embryos after extraembryonic venous obstruction , 1999, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[115]  Matthew D Clark,et al.  Genetic Screens for Mutations Affecting Development of Xenopus tropicalis , 2006, PLoS genetics.

[116]  F. Foster,et al.  Applications for multifrequency ultrasound biomicroscopy in mice from implantation to adulthood. , 2002, Physiological genomics.

[117]  W. Hop,et al.  Acutely altered hemodynamics following venous obstruction in the early chick embryo , 2003, Journal of Experimental Biology.

[118]  Michael Liebling,et al.  Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart , 2009, PLoS biology.

[119]  M E Dickinson,et al.  Measuring hemodynamic changes during mammalian development. , 2004, American journal of physiology. Heart and circulatory physiology.

[120]  L A Taber,et al.  A nonliner poroelastic model for the trabecular embryonic heart. , 1994, Journal of biomechanical engineering.

[121]  A. G. Gittenberger-de Groot,et al.  Spectrum of looping disturbances in stage 34 chicken hearts after retinoic acid treatment , 1995, The Anatomical record.

[122]  K. Tobita,et al.  Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. , 2000, American journal of physiology. Heart and circulatory physiology.

[123]  A E Cohn,et al.  PHYSIOLOGICAL ONTOGENY : A. CHICKEN EMBRYOS. XIII. THE TEMPERATURE CHARACTERISTIC FOR THE CONTRACTION RATE OF THE WHOLE HEART. , 1928, The Journal of general physiology.

[124]  Charles S. Peskin,et al.  Two-Dimensional Simulations of Valveless Pumping Using the Immersed Boundary Method , 2001, SIAM J. Sci. Comput..

[125]  Ronan O'Rahilly,et al.  Developmental Stages in Human Embryos: Including a Revision of Streeter's Horizons and a Survey of the Carnegie Collection , 1987 .

[126]  L A Taber,et al.  Mechanical aspects of cardiac development. , 1998, Progress in biophysics and molecular biology.

[127]  D. Yelon,et al.  A guide to analysis of cardiac phenotypes in the zebrafish embryo. , 2011, Methods in cell biology.

[128]  B. Cuneo,et al.  Heart rate perturbation in the stage 17-27 chick embryo: effect on stroke volume and aortic flow. , 1993, The American journal of physiology.

[129]  Gabriel Acevedo-Bolton,et al.  Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis , 2003, Nature.

[130]  Z Rychter,et al.  Formation of the heart loop and proliferation structure of its wall as a base for ventricular septation. , 1979, Herz.

[131]  Deepak Srivastava,et al.  Genetic regulation of cardiogenesis and congenital heart disease. , 2006, Annual review of pathology.

[132]  Jeroen Bakkers,et al.  Zebrafish as a model to study cardiac development and human cardiac disease , 2011, Cardiovascular research.

[133]  Antoon F. M. Moorman,et al.  Concepts of Cardiac Development in Retrospect , 2009, Pediatric Cardiology.

[134]  J. Raymond Johnson,et al.  THE BEHAVIOR OF THE EMBRYONIC HEART IN SOLUTIONS OF OUABAIN , 1938 .

[135]  Robert G. Gourdie,et al.  Hemodynamics Is a Key Epigenetic Factor in Development of the Cardiac Conduction System , 2003, Circulation research.

[136]  C. Ettensohn,et al.  Mechanisms of Epithelial Invagination , 1985, The Quarterly Review of Biology.

[137]  Rebecca D. Burdine,et al.  Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart , 2008, Proceedings of the National Academy of Sciences.

[138]  L A Taber,et al.  Mechanics of cardiac looping , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[139]  B. Bruneau The developmental genetics of congenital heart disease , 2008, Nature.

[140]  V Rychterová,et al.  Principle of growth in thickness of the heart ventricular wall in the chick embryo. , 1971, Folia morphologica.

[141]  Anna I Hickerson,et al.  Experimental study of the behavior of a valveless impedance pump , 2005 .

[142]  B. Hierck,et al.  The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. , 2007, Physiology.

[143]  G M Hutchins,et al.  The development of the semilunar valves in the human heart. , 1974, The American journal of pathology.

[144]  D. Sahn,et al.  Flow in the Early Embryonic Human Heart , 2003, Pediatric Cardiology.

[145]  G LIEBAU,et al.  [Significance of forces of inertia in the dynamics of blood circulation]. , 1957, Zeitschrift fur Kreislaufforschung.

[146]  B. Pelster,et al.  Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). , 1996, Circulation research.

[147]  Constance Weinstein,et al.  Development of cardiovascular systems : molecules to organisms , 1998 .

[148]  Hiroshi Tazawa,et al.  Development of heart rate irregularities in chick embryos. , 1998, American journal of physiology. Heart and circulatory physiology.

[149]  D. Bader,et al.  Signals from both sides: Control of cardiac development by the endocardium and epicardium. , 2007, Seminars in cell & developmental biology.

[150]  Viktor Hamburger,et al.  A series of normal stages in the development of the chick embryo , 1992, Journal of morphology.

[151]  Steren Chabert,et al.  Intramyocardial pressure measurements in the stage 18 embryonic chick heart. , 2002, American journal of physiology. Heart and circulatory physiology.

[152]  Beerend P. Hierck,et al.  The development of the heart and microcirculation: role of shear stress , 2008, Medical & Biological Engineering & Computing.

[153]  L A Taber,et al.  A model for stress-induced growth in the developing heart. , 1995, Journal of biomechanical engineering.

[154]  J. Yule Bogue,et al.  The Heart Rate of the Developing Chick , 1932 .

[155]  Jörg Männer,et al.  In vivo imaging of the cyclic changes in cross‐sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: A contribution to the understanding of the ontogenesis of cardiac pumping function , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[156]  Beerend P. Hierck,et al.  Endothelial colony-forming cells show a mature transcriptional response to shear stress , 2011, In Vitro Cellular & Developmental Biology - Animal.

[157]  J. Icardo,et al.  Morphologic study of ventricular trabeculation in the embryonic chick heart. , 1987, Acta anatomica.

[158]  L A Taber,et al.  On a nonlinear theory for muscle shells: Part II--Application to the beating left ventricle. , 1991, Journal of biomechanical engineering.

[159]  Alexander Barry,et al.  The intrinsic pulsation rates of fragments of the embryonic chick heart , 1942 .

[160]  B. Keller,et al.  Correlation of ventricular area, perimeter, and conotruncal diameter with ventricular mass and function in the chick embryo from stages 12 to 24. , 1990, Circulation research.

[161]  M Levin,et al.  Left-right asymmetry determination in vertebrates. , 2001, Annual review of cell and developmental biology.

[162]  C. E. Challice,et al.  The architectural development of the early mammalian heart. , 1974, Tissue & cell.

[163]  L. Miller,et al.  Fluid Dynamics of Heart Development , 2011, Cell Biochemistry and Biophysics.

[164]  Rüdiger Klein,et al.  Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor , 1995, Nature.