MAXIMA: A balloon-borne cosmic microwave background anisotropy experiment

We describe the Millimeter wave Anisotropy eXperiment IMaging Array (MAXIMA), a balloon-borne experiment which measured the temperature anisotropy of the cosmic microwave background (CMB) on angular scales of 10′ to 5°. MAXIMA mapped the CMB using 16 bolometric detectors in spectral bands centered at 150, 240, and 410 GHz, with 10′ resolution at all frequencies. The combined receiver sensitivity to CMB anisotropy was ~40 μK √s. The bolometric detectors, which were cooled to 100 mK, were a prototype of the detectors which will be used on the Planck Surveyor Satellite of the European Space Agency. Systematic parasitic contributions were controlled by using four uncorrelated spatial modulations, thorough cross-linking, multiple independent CMB observations, heavily baffled optics, and strong spectral discrimination. Pointing reconstruction was accurate to 1′, and absolute calibration was better than 4%. Two MAXIMA flights with more than 8.5 h of CMB observations have mapped a total of 300 deg^2 of the sky in regions of negligible known foreground emission. MAXIMA results have been released in previous publications and shown to be consistent with the Wilkinson Microwave Anisotropy Probe. MAXIMA I maps, power spectra, and correlation matrices are publicly available at http://cosmology.berkeley.edu/maxima.

[1]  Jiun-Huei Proty Wu,et al.  The MAXIMA experiment: latest results and consistency tests , 2003, astro-ph/0309409.

[2]  Adrian T. Lee,et al.  Correlations between the Wilkinson Microwave Anisotropy Probe and MAXIMA Cosmic Microwave Background Anisotropy Maps , 2003, astro-ph/0308355.

[3]  J. Borrill,et al.  MAXIPOL: a balloon-borne experiment for measuring the polarization anisotropy of the cosmic microwave background radiation , 2003, astro-ph/0308259.

[4]  Instituto de Fisica de Cantabria,et al.  Goodness-of-fit tests to study the Gaussianity of the MAXIMA data , 2003, astro-ph/0306164.

[5]  D. McCammon,et al.  Microcalorimeter and bolometer model , 2003, astro-ph/0304397.

[6]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[7]  A. Lee,et al.  Determining Foreground Contamination in Cosmic Microwave Background Observations: Diffuse Galactic Emission in the MAXIMA-I Field , 2003, astro-ph/0301077.

[8]  Caltech,et al.  Estimates of Cosmological Parameters Using the Cosmic Microwave Background Angular Power Spectrum of ACBAR , 2002, astro-ph/0212517.

[9]  B. Jain,et al.  Last stand before WMAP: Cosmological parameters from lensing, CMB, and galaxy clustering , 2002, astro-ph/0212417.

[10]  Adrian T. Lee,et al.  Multiple methods for estimating the bispectrum of the cosmic microwave background with application to the MAXIMA data , 2002, astro-ph/0211123.

[11]  Elizabeth Waldram,et al.  First results from the Very Small Array - IV. Cosmological parameter estimation , 2002, astro-ph/0205367.

[12]  J. Bock,et al.  Relative performance of filled and feedhorn-coupled focal-plane architectures. , 2002, Applied optics.

[13]  Eugene Serabyn,et al.  Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications , 2001 .

[14]  Adrian T. Lee,et al.  Frequentist estimation of cosmological parameters from the MAXIMA-1 cosmic microwave background anisotropy data , 2001, astro-ph/0111010.

[15]  A. Lee,et al.  Estimate of the cosmological bispectrum from the MAXIMA-1 cosmic microwave background map. , 2001, Physical review letters.

[16]  Adrian T. Lee,et al.  Making maps of the cosmic microwave background: The MAXIMA example , 2001, astro-ph/0106451.

[17]  Adrian T. Lee,et al.  Cosmological Implications of the MAXIMA-1 High-Resolution Cosmic Microwave Background Anisotropy Measurement , 2001, astro-ph/0105062.

[18]  Adrian T. Lee,et al.  A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data , 2001, astro-ph/0104459.

[19]  Adrian T. Lee,et al.  Tests for Gaussianity of the MAXIMA-1 cosmic microwave background map. , 2001, Physical review letters.

[20]  James J. Bock,et al.  Constraints on Cosmological Parameters from MAXIMA-1 , 2000 .

[21]  Adrian T. Lee,et al.  Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR cosmic microwave background observations. , 2000, Physical review letters.

[22]  J. Borrill,et al.  Asymmetric Beams in Cosmic Microwave Background Anisotropy Experiments , 2000, astro-ph/0007212.

[23]  V. V. Hristov,et al.  MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.

[24]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[25]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[26]  S. Hanany,et al.  The effect of the detector response time on bolometric cosmic microwave background anisotropy experiments , 1998, astro-ph/9801291.

[27]  J. Puchalla,et al.  Whole-Disk Observations of Jupiter, Saturn, and Mars in Millimeter/Submillimeter Bands , 1996, astro-ph/9612040.

[28]  G. Smoot,et al.  Contribution of Extragalactic Infrared Sources to Cosmic Microwave Background Foreground Anisotropy , 1996, astro-ph/9603121.

[29]  Andrew E. Lange,et al.  A novel bolometer for infrared and millimeter-wave astrophysics , 1995 .

[30]  A. Lange,et al.  Emissivity measurements of reflective surfaces at near-millimeter wavelengths. , 1995, Applied optics.

[31]  C. Hagmann,et al.  Adiabatic demagnetization refrigerators for small laboratory experiments and space astronomy , 1995 .

[32]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[33]  Ahmed A. Kishk,et al.  Microwave Horns and Feeds , 1994 .

[34]  Charles L. Bennett,et al.  Preliminary results from the COBE differential microwave radiometers - Large angular scale isotropy of the cosmic microwave background , 1991 .

[35]  Paul L. Richards,et al.  Development of an adiabatic demagnetization refrigerator for SIRTF , 1990 .

[36]  M. Halpern,et al.  Far infrared transmission of dielectrics at cryogenic and room temperatures: glass, Fluorogold, Eccosorb, Stycast, and various plastics. , 1986, Applied optics.

[37]  R. Larrabee Neutron Transmutation Doping of Semiconductor Materials , 1984 .

[38]  E. Wright,et al.  A Proposed New White Dwarf Spectral Classification , 1980 .

[39]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[40]  Asaph Hall Applied Optics. , 1887, Science.

[41]  G. Burr,et al.  Journal of Applied Physics , 2004 .

[42]  J. R. Bond,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 3/3/03 COSMOLOGICAL PARAMETERS FROM COSMIC BACKGROUND IMAGER OBSERVATIONS AND COMPARISONS WITH BOOMERANG, DASI, AND MAXIMA , 2003 .

[43]  Nir S. Kampel Ph.D. Thesis , 2002 .

[44]  D. Arbosa,et al.  Cosmological Implications of the Maxima-i High Resolution Cosmic Microwave Background Anisotropy Measurement , 2001 .

[45]  Eugene E. Haller,et al.  NTD germanium: A novel material for low-temperature bolometers , 1984 .

[46]  W. T. Welford,et al.  The Optics of Nonimaging Concentrators: Light and Solar Energy , 1978 .

[47]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[48]  D. H. Martin Spectroscopic Techniques for Far Infra-red, Submillimetre and Millimetre Waves , 1967 .