The ecological coherence of high bacterial taxonomic ranks

[1]  S. Goffredi,et al.  Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea. , 2010, Environmental microbiology.

[2]  N. Stenseth,et al.  Convergent temporal dynamics of the human infant gut microbiota , 2010, The ISME Journal.

[3]  N. McNamara,et al.  Vegetation Affects the Relative Abundances of Dominant Soil Bacterial Taxa and Soil Respiration Rates in an Upland Grassland Soil , 2010, Microbial Ecology.

[4]  Natalia N. Ivanova,et al.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.

[5]  Dominique Arrouays,et al.  Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA bacterial tree. , 2009, Environmental microbiology.

[6]  Dawn Field,et al.  The seasonal structure of microbial communities in the Western English Channel. , 2009, Environmental microbiology.

[7]  M. Lau,et al.  Correction for Pointing et al., Highly specialized microbial diversity in hyper-arid polar desert , 2009, Proceedings of the National Academy of Sciences.

[8]  Jonathan A. Eisen,et al.  Human gut microbiome adopts an alternative state following small bowel transplantation , 2009, Proceedings of the National Academy of Sciences.

[9]  W. Doolittle,et al.  The practice of classification and the theory of evolution, and what the demise of Charles Darwin's tree of life hypothesis means for both of them , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  Thijs J. G. Ettema,et al.  The α-proteobacteria: the Darwin finches of the bacterial world , 2009, Biology Letters.

[11]  R. Knight,et al.  Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale , 2009, Applied and Environmental Microbiology.

[12]  F. Martin-Laurent,et al.  Mapping field-scale spatial patterns of size and activity of the denitrifier community. , 2009, Environmental microbiology.

[13]  Mark J. Bailey,et al.  TerraGenome: a consortium for the sequencing of a soil metagenome , 2009, Nature Reviews Microbiology.

[14]  J. Cherrier,et al.  Impact of sideways and bottom-up control factors on bacterial community succession over a tidal cycle , 2009, Proceedings of the National Academy of Sciences.

[15]  Eoin L. Brodie,et al.  Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland , 2009, The ISME Journal.

[16]  C. Fraser,et al.  The Bacterial Species Challenge: Making Sense of Genetic and Ecological Diversity , 2009, Science.

[17]  Bernard Henrissat,et al.  Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils , 2009, Applied and Environmental Microbiology.

[18]  R. Knight,et al.  A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses , 2009, The ISME Journal.

[19]  C. Richardson,et al.  Environmental and anthropogenic controls over bacterial communities in wetland soils , 2008, Proceedings of the National Academy of Sciences.

[20]  F. Cohan,et al.  The Origins of Ecological Diversity in Prokaryotes , 2008, Current Biology.

[21]  Jaxk Reeves,et al.  Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems , 2008 .

[22]  C. Schadt,et al.  The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. , 2008, Environmental microbiology.

[23]  E. Koonin,et al.  Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world , 2008, Nucleic acids research.

[24]  H. Insam,et al.  Molecular analysis of bacterial community succession during prolonged compost curing. , 2008, FEMS microbiology ecology.

[25]  Alberto Riva,et al.  Distantly sampled soils carry few species in common , 2008, The ISME Journal.

[26]  D. Gevers,et al.  Resource Partitioning and Sympatric Differentiation Among Closely Related Bacterioplankton , 2008, Science.

[27]  Thijs J. G. Ettema,et al.  Signature Genes as a Phylogenomic Tool , 2008, Molecular biology and evolution.

[28]  M. Wagner,et al.  Microbial diversity and the genetic nature of microbial species , 2008, Nature Reviews Microbiology.

[29]  Robert A. Edwards,et al.  Bacterial carbon processing by generalist species in the coastal ocean , 2008, Nature.

[30]  D. M. Ward,et al.  Genomics, environmental genomics and the issue of microbial species , 2008, Heredity.

[31]  M. Romantschuk,et al.  Effects of differing temperature management on development of Actinobacteria populations during composting. , 2007, Research in microbiology.

[32]  R. B. Jackson,et al.  Toward an ecological classification of soil bacteria. , 2007, Ecology.

[33]  F. Cohan,et al.  A Systematics for Discovering the Fundamental Units of Bacterial Diversity , 2007, Current Biology.

[34]  Kelly P. Williams,et al.  A Robust Species Tree for the Alphaproteobacteria , 2007, Journal of bacteriology.

[35]  Laura E. Green,et al.  The role of ecological theory in microbial ecology , 2007, Nature Reviews Microbiology.

[36]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[37]  S. Tringe,et al.  Quantitative Phylogenetic Assessment of Microbial Communities in Diverse Environments , 2007, Science.

[38]  M. Häggblom,et al.  Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. , 2007, FEMS microbiology ecology.

[39]  J. Schimel,et al.  Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. , 2007, FEMS microbiology ecology.

[40]  C. Boucher,et al.  Genomic Structure and Phylogeny of the Plant Pathogen Ralstonia solanacearum Inferred from Gene Distribution Analysis , 2006, Journal of bacteriology.

[41]  Radhey S. Gupta,et al.  Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species , 2007, BMC Evolutionary Biology.

[42]  P. Turnbaugh,et al.  Microbial ecology: Human gut microbes associated with obesity , 2006, Nature.

[43]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[44]  Michael Y. Galperin,et al.  The cyanobacterial genome core and the origin of photosynthesis , 2006, Proceedings of the National Academy of Sciences.

[45]  Radhey S. Gupta,et al.  Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups , 2006, Antonie van Leeuwenhoek.

[46]  Sallie W. Chisholm,et al.  Niche Partitioning Among Prochlorococcus Ecotypes Along Ocean-Scale Environmental Gradients , 2006, Science.

[47]  S. Ishii,et al.  Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed. , 2006, Environmental microbiology.

[48]  S. Ishii,et al.  Presence and Growth of Naturalized Escherichia coli in Temperate Soils from Lake Superior Watersheds , 2006, Applied and Environmental Microbiology.

[49]  T. Schmidt,et al.  The structure of microbial communities in soil and the lasting impact of cultivation , 2001, Microbial Ecology.

[50]  D. Gevers,et al.  Re-evaluating prokaryotic species , 2005, Nature Reviews Microbiology.

[51]  Jason D. Gans,et al.  Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil , 2005, Science.

[52]  K. Konstantinidis,et al.  Genomic insights that advance the species definition for prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Zechmeister-Boltenstern,et al.  Comparison of Diversities and Compositions of Bacterial Populations Inhabiting Natural Forest Soils , 2004, Applied and Environmental Microbiology.

[54]  E. Karlberg,et al.  Computational inference of scenarios for (cid:1) -proteobacterial genome evolution , 2004 .

[55]  James W. Valentine,et al.  On the Origin of Phyla , 2004 .

[56]  C. Kurland,et al.  Horizontal gene transfer: A critical view , 2003 .

[57]  C. Fraser,et al.  Phylogenomics: Intersection of Evolution and Genomics , 2003, Science.

[58]  William A. Siebold,et al.  SAR11 clade dominates ocean surface bacterioplankton communities , 2002, Nature.

[59]  W. Doolittle,et al.  Prokaryotic evolution in light of gene transfer. , 2002, Molecular biology and evolution.

[60]  Sandie Baldauf,et al.  The tree of life is a tree (more or less) , 2002 .

[61]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[62]  F. Hagen,et al.  Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers , 2002 .

[63]  T. Bouvier,et al.  Compositional changes in free‐living bacterial communities along a salinity gradient in two temperate estuaries , 2002 .

[64]  J. P. Grime,et al.  Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges , 2001, Science.

[65]  E. Smit,et al.  Diversity and Seasonal Fluctuations of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods , 2001, Applied and Environmental Microbiology.

[66]  T. Sicheritz-Pontén,et al.  A phylogenomic approach to microbial evolution. , 2001, Nucleic acids research.

[67]  R. Amann,et al.  Bacterioplankton Compositions of Lakes and Oceans: a First Comparison Based on Fluorescence In Situ Hybridization , 1999, Applied and Environmental Microbiology.

[68]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[69]  L. Orgel,et al.  Phylogenetic Classification and the Universal Tree , 1999 .

[70]  B. Snel,et al.  Genome phylogeny based on gene content , 1999, Nature Genetics.

[71]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[72]  J. Rall This is Biology, The Science of the Living World. , 1997 .

[73]  E. Mayr This Is Biology: The Science of the Living World , 1997 .

[74]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[75]  P. Sassone-Corsi,et al.  Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil , 2022 .