Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes.

[1]  S. Mann,et al.  Ciba Foundation Symposium , 1997 .

[2]  W. Shafer,et al.  Susceptibility of Neisseria gonorrhoeae to protegrins , 1996, Infection and immunity.

[3]  E. Wagar,et al.  Susceptibility of Chlamydia trachomatis to protegrins and defensins , 1996, Infection and immunity.

[4]  A. Rao,et al.  In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis , 1996, Infection and immunity.

[5]  T. Ganz,et al.  The structure of porcine protegrin genes , 1995, FEBS letters.

[6]  R. Andrew Byrd,et al.  ASSOCIATION OF BIOMOLECULAR SYSTEMS VIA PULSED FIELD GRADIENT NMR SELF-DIFFUSION MEASUREMENTS , 1995 .

[7]  D. Barra,et al.  Amphibian skin: a promising resource for antimicrobial peptides. , 1995, Trends in biotechnology.

[8]  A. Otaka,et al.  Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. , 1995, Chemical & pharmaceutical bulletin.

[9]  Terry D. Lee,et al.  Determination of disulphide bridges in PG‐2, an antimicrobial peptide from porcine leukocytes , 1995, Journal of peptide science : an official publication of the European Peptide Society.

[10]  J. Hoffmann,et al.  Innate immunity of insects. , 1995, Current opinion in immunology.

[11]  M. Leippe,et al.  Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: isolation, primary structure, and pore bacterial cytoplasmic membranes , 1994 .

[12]  C. Zhao,et al.  Identification of a new member of the protegrin family by cDNA cloning , 1994, FEBS letters.

[13]  Terry D. Lee,et al.  Gallinacins: cysteine‐rich antimicrobial peptides of chicken leukocytes , 1994, FEBS letters.

[14]  S. Kawabata,et al.  Structure-function relationships of tachyplesins and their analogues. , 1994, Ciba Foundation symposium.

[15]  R. Lehrer,et al.  Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins , 1993, FEBS letters.

[16]  D. Kohda,et al.  A comparative study of the solution structures of tachyplesin I and a novel anti-HIV synthetic peptide, T22 ([Tyr5,12, Lys7]-polyphemusin II), determined by nuclear magnetic resonance. , 1993, Biochimica et biophysica acta.

[17]  Vladimir Sklenar,et al.  Gradient-Tailored Water Suppression for 1H-15N HSQC Experiments Optimized to Retain Full Sensitivity , 1993 .

[18]  J. Puglisi,et al.  Conformation of the TAR RNA-arginine complex by NMR spectroscopy. , 1992, Science.

[19]  R. R. Ernst,et al.  Computer-optimized homonuclear TOCSY experiments with suppression of cross relaxation , 1991 .

[20]  D. Eisenberg,et al.  Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. , 1991, Science.

[21]  T. Ganz,et al.  Defensins: Endogenous antibiotic peptides of animal cells , 1991, Cell.

[22]  R I Lehrer,et al.  Antimicrobial polypeptides of human neutrophils. , 1990, Blood.

[23]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[24]  Timothy F. Havel,et al.  A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular1H−1H proximities in solution , 1984 .

[25]  Richard R. Ernst,et al.  Multiple quantum filters for elucidating NMR coupling networks , 1982 .

[26]  D. Eisenberg,et al.  The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. , 1982, Biophysical journal.

[27]  K Wüthrich,et al.  A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. , 1980, Biochemical and biophysical research communications.