Formulation Process Analysis of a Virus-based Biopesticide to Control the Tomato leafminer Tuta absoluta

Virus-based biopesticides are effective biocontrol agents of crop insect pests. Development of suitable formulations and production processes are necessary to obtain high-quality products easily adopted by farmers. A detailed unit operation study was carried out for the production process of a Phthorimaea operculella granulovirus-based biopesticide to control the tomato leafminer, Tuta absoluta, one of the most important pests affecting this crop. Physicochemical, microbiological, and insecticidal parameters were implemented in the process and applied to the finished product, and a scaling strategy was developed. A Quantitative Polymerase Chain Reaction (Q-PCR) technique was implemented to quantify viral concentrations in the active ingredient (5.34 ± 1.44 x10 Occlusion Bodies mL) and in the finished product (>1.6x10 OB mL), without contaminant interferences. The Q-PCR methodology was also useful to select the appropriate solid mixing time following Lacey ́s mixing index (8 min). Factors and similarity principles influencing the liquid mixing process were identified in the scaling evaluation. Furthermore, the drying kinetics analysis enabled identifying a drying temperature of 35 °C, with an efficacy under controlled conditions higher HIGHLIGHTS • Technological analysis of the production for a virus-based biopesticide. • Selection of technological conditions considered to have a significant influence. • Scale-up strategy based on geometric and the dynamic similarities. • Reproducibility and repeatability assessment of the formulation process. Quiroga-Cubides, G.; et al. 2 Brazilian Archives of Biology and Technology. Vol.65: e22210342, 2022 www.scielo.br/babt than 97%. Contaminant concentration was lower than 1%, indicating controlled and aseptic formulation process conditions. A simple statistical method was used to estimate the reproducibility and repeatability of the parameters assessed in the finished product. These results enable to establish and extrapolate important parameters in the standardization, scale-up, and quality control for the granulovirus-based biopesticide.

[1]  G. Barbosa‐Cánovas,et al.  Water Activity in Foods: Fundamentals and Applications , 2020 .

[2]  G. Roudaut Water Activity and Physical Stability , 2020 .

[3]  P. Perré The proper use of mass diffusion equation in drying modelling: from simple configurations to non-fickian behaviours , 2020 .

[4]  L. Villamizar,et al.  Novel biopesticide based on Erinnyis ello betabaculovirus: characterization and preliminary field evaluation to control Erinnyis ello in rubber plantations. , 2019, Pest management science.

[5]  I. Meki,et al.  Insect Viruses as Biocontrol Agents: Challenges and Opportunities , 2019 .

[6]  E. Fritsch,et al.  The potential of novel African isolates of Phthorimaea operculella granulovirus for the control of Tuta absoluta , 2018, Journal of Applied Entomology.

[7]  Jason S Crater,et al.  Scale-up of industrial microbial processes , 2018, FEMS microbiology letters.

[8]  M. López-Ferber,et al.  Potential of betabaculoviruses to control the tomato leafminer Tuta absoluta (Meyrick) , 2018 .

[9]  S. Moore,et al.  Production, formulation, and bioassay of baculoviruses for pest control , 2017 .

[10]  A. Beşe,et al.  Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. , 2016, Food chemistry.

[11]  G. Barrera,et al.  PCR en tiempo real: una metodología útil para la detección y cuantificación de granulovirus , 2016 .

[12]  S. Lebeer,et al.  Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. , 2016, International journal of pharmaceutics.

[13]  V. Romanowski,et al.  Baculovirus Insecticides in Latin America: Historical Overview, Current Status and Future Perspectives , 2015, Viruses.

[14]  J. L. Gómez,et al.  Nucleopoliedrovirus de Spodoptera frugiperda SfNPV003: compatibilidad con agroquímicos y estabilidad en condiciones de almacenamiento , 2014 .

[15]  B. Mandal,et al.  Mass Transfer Operations I , 2014 .

[16]  Robert W. Behle,et al.  Formulations of Entomopathogens as Bioinsecticides , 2014 .

[17]  S. Delaunay,et al.  Effects of bioreactor hydrodynamics on the physiology of Streptomyces , 2013, Bioprocess and Biosystems Engineering.

[18]  R. L. Harrison,et al.  Baculoviruses and Other Occluded Insect Viruses , 2012 .

[19]  Laura VILLAMIZAR-R.,et al.  Estabilidad de formulaciones a base de granulovirus para controlar Tecia solanivora (Lepidoptera: Gelechiidae) en campo , 2011, Revista Colombiana de Entomología.

[20]  John Villadsen,et al.  Scale-Up of Bioprocesses , 2011 .

[21]  Marco P.C. Marques,et al.  Bioprocess scale‐up: quest for the parameters to be used as criterion to move from microreactors to lab‐scale , 2010 .

[22]  C. Demétrio,et al.  Potential of a granulovirus isolate to control Phthorimaea operculella (Lepidoptera: Gelechiidae) , 2010, BioControl.

[23]  A. Patwardhan,et al.  Scale-up of pump-mix mixers using CFD , 2010 .

[24]  İbrahim Doymaz,et al.  Convective drying kinetics of strawberry , 2008 .

[25]  M. López-Ferber,et al.  Evaluation of the per os insecticidal activity of baculoviruses by a nebulization method , 2008 .

[26]  P. Lacey,et al.  Developments in the theory of particle mixing , 2007 .

[27]  B. Bonning,et al.  Introduction to the use of baculoviruses as biological insecticides. , 2007, Methods in molecular biology.

[28]  D. García-Cortés,et al.  Hidrodinámica en tanques agitados con turbinas de disco con paletas planas , 2006 .

[29]  A. M. Cotes,et al.  Implementación de técnicas de control de calidad para la producción de un bioplaguicida a base del granulovirus de Phthorimaea operculella PhopGV , 2005, Revista Colombiana de Entomología.

[30]  D. Knorr,et al.  Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG , 2005 .

[31]  M. López-Ferber,et al.  Les stratégies des baculovirus pour franchir l’intestin des insectes , 2004 .

[32]  M. Whelan,et al.  A method for the absolute quantification of cDNA using real-time PCR. , 2003, Journal of immunological methods.

[33]  J. Zeddam,et al.  Producción viral y tasas de aplicación del granulovirus usado para el control biológico de las polillas de la papa Phthorimaea operculella y Tecia solanivora (Lepidoptera:Gelechiidae) , 2003 .

[34]  Gunnar Lidén,et al.  Understanding the bioreactor , 2002 .

[35]  N. Jenkins,et al.  Quality Control of Fungal and Viral Biocontrol Agents - Assurance of Product Performance , 2000 .

[36]  Berkholz,et al.  Data and knowledge based experimental design for fermentation process optimization. , 2000, Enzyme and microbial technology.

[37]  H. D. Burges,et al.  Formulation of Microbial Biopesticides , 1998, Springer Netherlands.

[38]  U. Jáuregui‐Haza,et al.  La planta piloto y el escalado de procesos de obtención de principios activos para medicamentos por síntesis química , 1996 .

[39]  S. H. Simpkinson,et al.  Data analysis and reporting , 1966 .

[40]  V. Vanec̆ĕk,et al.  Drying by fluidization. , 1963 .