Neutral Silicon Vacancy Centers in Undoped Diamond via Surface Control.

Neutral silicon vacancy centers (SiV^{0}) in diamond are promising candidates for quantum applications; however, stabilizing SiV^{0} requires high-purity, boron-doped diamond, which is not a readily available material. Here, we demonstrate an alternative approach via chemical control of the diamond surface. We use low-damage chemical processing and annealing in a hydrogen environment to realize reversible and highly stable charge state tuning in undoped diamond. The resulting SiV^{0} centers display optically detected magnetic resonance and bulklike optical properties. Controlling the charge state tuning via surface termination offers a route for scalable technologies based on SiV^{0} centers, as well as charge state engineering of other defects.

[1]  S. Pezzagna,et al.  Charge-State Tuning of Single SnV Centers in Diamond , 2020 .

[2]  S. Srinivasan,et al.  Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond , 2020, 2005.01142.

[3]  M. Markham,et al.  Optically Detected Magnetic Resonance in Neutral Silicon Vacancy Centers in Diamond via Bound Exciton States. , 2020, Physical review letters.

[4]  E. Ekimov,et al.  Observation of a 1.979-eV spectral line of a germanium-related color center in microdiamonds and nanodiamonds , 2020 .

[5]  P. Maletinsky,et al.  Parabolic Diamond Scanning Probes for Single-Spin Magnetic Field Imaging , 2020, Physical Review Applied.

[6]  D. Englund,et al.  Experimental demonstration of memory-enhanced quantum communication , 2019, Nature.

[7]  P. Stroganov,et al.  Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface. , 2019, Physical review letters.

[8]  James J. Allred,et al.  Origins of Diamond Surface Noise Probed by Correlating Single-Spin Measurements with Surface Spectroscopy , 2018, Physical Review X.

[9]  F. Jelezko,et al.  Single Si - V− Centers in Low-Strain Nanodiamonds with Bulklike Spectral Properties and Nanomanipulation Capabilities , 2018, Physical Review Applied.

[10]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[11]  Dirk Englund,et al.  Material platforms for spin-based photonic quantum technologies , 2018, Nature Reviews Materials.

[12]  Á. Gali,et al.  Ab Initio Magneto-Optical Spectrum of Group-IV Vacancy Color Centers in Diamond , 2018, Physical Review X.

[13]  Xu Li,et al.  The role of hydrogen plasma power on surface roughness and carrier transport in transfer-doped H-diamond , 2018 .

[14]  M. Markham,et al.  Observation of an environmentally insensitive solid-state spin defect in diamond , 2017, Science.

[15]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[16]  R. Yuste,et al.  Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential , 2016, Proceedings of the National Academy of Sciences.

[17]  Mikhail D. Lukin,et al.  Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation , 2015, 1512.03820.

[18]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm , 2015 .

[19]  Hannes Bernien,et al.  Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields , 2015, Nature Photonics.

[20]  D. Budker,et al.  Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond , 2015, Nature Communications.

[21]  M. Lukin,et al.  Efficient readout of a single spin state in diamond via spin-to-charge conversion. , 2014, Physical review letters.

[22]  Neil B. Manson,et al.  Electron–phonon processes of the silicon-vacancy centre in diamond , 2014, 1411.2871.

[23]  M. Stutzmann,et al.  Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures. , 2014, Nano letters.

[24]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[25]  F. Jelezko,et al.  Multiple intrinsically identical single-photon emitters in the solid state , 2013, Nature Communications.

[26]  A. Wee,et al.  Surface transfer doping of diamond by MoO3 : a combined spectroscopic and Hall measurement study , 2013 .

[27]  J. Maze,et al.  Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties , 2013, 1310.2137.

[28]  E. Sudhölter,et al.  Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure. , 2013, The Journal of chemical physics.

[29]  M. Kasu,et al.  Maximum hole concentration for Hydrogen-terminated diamond surfaces with various surface orientations obtained by exposure to highly concentrated NO2 , 2013 .

[30]  Jan Meijer,et al.  Charge state manipulation of qubits in diamond , 2012, Nature Communications.

[31]  A. Greentree,et al.  Depletion of nitrogen‐vacancy color centers in diamond via hydrogen passivation , 2011, 1108.6078.

[32]  M. Stutzmann,et al.  Chemical control of the charge state of nitrogen-vacancy centers in diamond , 2010, 1011.5109.

[33]  M. Kasu,et al.  Enhancement and Stabilization of Hole Concentration of Hydrogen-Terminated Diamond Surface Using Ozone Adsorbates , 2010 .

[34]  A. Hoffman,et al.  Morphological evolution of polished single crystal (100) diamond surface exposed to microwave hydrogen plasma , 2009 .

[35]  J. Angus,et al.  Electrochemical pinning of the Fermi level: mediation of photoluminescence from gallium nitride and zinc oxide. , 2008, Journal of the American Chemical Society.

[36]  D. Twitchen,et al.  Electron paramagnetic resonance studies of silicon-related defects in diamond , 2008 .

[37]  Stefan Nowy,et al.  The diamond/aqueous electrolyte interface: an impedance investigation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[38]  C. Manfredotti,et al.  Diamond surface conductivity after exposure to molecular hydrogen , 2007 .

[39]  L. Ley,et al.  Surface transfer doping of diamond , 2004, Nature.

[40]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.

[41]  P. Ziemann,et al.  Roughness transitions of diamond(100) induced by hydrogen-plasma treatment , 1998 .

[42]  K. V. Ravi,et al.  Resistivity of chemical vapor deposited diamond films , 1989 .

[43]  R. M. Chrenko Boron, the Dominant Acceptor in Semiconducting Diamond , 1973 .

[44]  R. Farrer On the substitutional nitrogen donor in diamond , 1969 .