Multimodal architectonic mapping of human superior temporal gyrus

Although it is generally accepted that human superior temporal gyrus is activated by a huge variety of auditory and linguistic tasks, little is known about the exact positions and extents of cortical areas that are located on the lateral convexity of the gyrus (e.g., Brodmann’s area 22). Such information, however, is relevant for a rigorous testing of structural-functional relationships in both normal volunteers and patients suffering from disorders of auditory and language perception. The present combined cytoarchitectonic and receptorarchitectonic study identifies a distinct area (Te3) in the lateral bulge of the superior temporal gyrus by using an algorithm-based approach for the detection of cortical borders. Our mapping data show that, in contrast to Brodmann’s area (BA) 22, only small portions of Te3 reach the dorsal and ventral banks of the gyrus. Therefore, we labelled the newly defined area as “Te3” and not as “BA 22”. The cytoarchitectonically defined borders of Te3 coincide with abrupt changes in the receptorarchitecture of several classical neurotransmitters, suggesting that Te3 represents a functionally relevant area of the human superior temporal gyrus. Since position and extent of area Te3 varied considerably between subjects, probability maps were created that show for each voxel of the standard references space, the frequency with which Te3 was present in it. These maps, in combination with previously published maps of the primary auditory cortex, can directly be compared with functional imaging data, and may open new perspectives for the analysis of structural-functional correlations in the human auditory and language systems.

[1]  J. Mazziotta,et al.  Brain Mapping: The Methods , 2002 .

[2]  A. Friederici,et al.  The brain basis of syntactic processes: functional imaging and lesion studies , 2003, NeuroImage.

[3]  Karl Zilles,et al.  ANATOMICAL ORGANIZATION OF THE HUMAN AUDITORY CORTEX: CYTOARCHITECTURE AND TRANSMITTER RECEPTORS , 2005 .

[4]  Karl Zilles,et al.  Elastische Anpassung in der digitalen Bildverarbeitung auf mehreren Auflösungsstufen mit Hilfe von Mehrgitterverfahren , 1997, DAGM-Symposium.

[5]  Stephen M. Rao,et al.  Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging , 1997, The Journal of Neuroscience.

[6]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[7]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[8]  A. Palmer,et al.  Histochemical identification of cortical areas in the auditory region of the human brain , 2002, Experimental Brain Research.

[9]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[10]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[11]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[12]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[13]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[14]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[15]  A. Hopf Die Myeloarchitektonik des Isocortex temporalis beim Menschen , 1954, 1954.

[16]  浜中 淑彦 Carl Wernicke;Der aphasische Symptomencomplex--Eine psychologische Studie auf anatomischer Basis(「失語症候群--解剖学的基礎に立つ心理学的研究」,Max Cohn & Weigert,Breslau,1874) , 1975 .

[17]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[18]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[19]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[20]  C. Wernicke Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis , 1874 .

[21]  A. Schleicher,et al.  Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry , 2002, European Neuropsychopharmacology.

[22]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[23]  S. E. Henschen Über die Hörsphäre , 1918 .

[24]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[25]  Lutz Jäncke,et al.  Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects , 1999, Neuroscience Letters.