Antibacterial polymer fibres by rosin compounding and melt-spinning

[1]  R.B. Lincoln rosin , 2020, Catalysis from A to Z.

[2]  K. Song,et al.  Characterization of Ecklonia cava Alginate Films Containing Cinnamon Essential Oils , 2018, International journal of molecular sciences.

[3]  H. Pan,et al.  Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. , 2018, Carbohydrate polymers.

[4]  T. Delair,et al.  Processing and antibacterial properties of chitosan-coated alginate fibers. , 2017, Carbohydrate polymers.

[5]  C. R. Rejeesh,et al.  Material characterization of starch derived bio degradable plastics and its mechanical property estimation , 2018 .

[6]  A. Siitonen,et al.  Effect of volatile organic compounds from Pinus sylvestris and Picea abies on Staphylococcus aureus, Escherichia coli, Streptococcus pneumoniae and Salmonella enterica serovar Typhimurium , 2017 .

[7]  A. Dufresne,et al.  PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. , 2017, ACS applied materials & interfaces.

[8]  M. Fraaije,et al.  Bacterial enzymes involved in lignin degradation. , 2016, Journal of biotechnology.

[9]  U. H. Erdogan,et al.  Structural and Antibacterial Properties of PP/CuO Composite Filaments Having Different Cross Sectional Shapes , 2016 .

[10]  T. Peijs,et al.  Binderless all-cellulose fibreboard from microfibrillated lignocellulosic natural fibres , 2016 .

[11]  L. Mattoso,et al.  Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. , 2016, Carbohydrate polymers.

[12]  N. Manolova,et al.  Antibacterial PLA/PEG electrospun fibers: Comparative study between grafting and blending PEG , 2016 .

[13]  H. Lemmetyinen,et al.  Characterization of thermally aged polyetheretherketone fibres – mechanical, thermal, rheological and chemical property changes , 2015 .

[14]  Jing Shen,et al.  Starch/rosin complexes for improving the interaction of mineral filler particles with cellulosic fibers. , 2015, Carbohydrate polymers.

[15]  V. Yudin,et al.  Wet spinning of fibers made of chitosan and chitin nanofibrils. , 2014, Carbohydrate polymers.

[16]  R. Boldt,et al.  Preparation of melt-spun antimicrobially modified LDH/polyolefin nanocomposite fibers. , 2014, Materials science & engineering. C, Materials for biological applications.

[17]  A. Díez-Pascual,et al.  ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. , 2014, ACS applied materials & interfaces.

[18]  H. Ploehn,et al.  Sustainable thermoplastic elastomers derived from renewable cellulose, rosin and fatty acids , 2014 .

[19]  M. Rezaei,et al.  Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens , 2014 .

[20]  S. D. Hutagalung,et al.  Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite , 2013, Beilstein journal of nanotechnology.

[21]  H. Kim,et al.  Influence of antimicrobial additives on the formation of rosin nanofibers via electrospinning. , 2013, Colloids and surfaces. B, Biointerfaces.

[22]  Chuanbing Tang,et al.  Progress in renewable polymers from natural terpenes, terpenoids, and rosin. , 2013, Macromolecular rapid communications.

[23]  L. Cindrella,et al.  Synthesis and Characterization of NiS/MnS Core-Shell Embedded Conducting Polyaniline Composite for Photovoltaic Application , 2010 .

[24]  Xiaoqing Liu,et al.  High‐performance biobased epoxy derived from rosin , 2010 .

[25]  H. Brünig,et al.  Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes , 2010 .

[26]  M. Pollini,et al.  Characterization of antibacterial silver coated yarns , 2009, Journal of materials science. Materials in medicine.

[27]  K. Lounatmaa,et al.  Effects of Norway Spruce (Picea abies) Resin on Cell Wall and Cell Membrane of Staphylococcus aureus , 2009, Ultrastructural pathology.

[28]  W. Kern,et al.  Polyethylene compounds with antimicrobial surface properties , 2006 .

[29]  I. Vroman,et al.  Antibacterial activity of modified polyamide fibers , 2005 .

[30]  A. Coombes,et al.  Gravity spinning of polycaprolactone fibres for applications in tissue engineering. , 2004, Biomaterials.

[31]  H. Komber,et al.  High‐speed melt spinning of various grades of polylactides , 2004 .

[32]  J. Martín-Martínez,et al.  Characterization of eva-based adhesives containing different amounts of rosin ester or polyterpene tackifier , 2003 .

[33]  R. Gross,et al.  Biodegradable polymers for the environment. , 2002, Science.

[34]  J. Leroux,et al.  Effects of steam sterilization on thermogelling chitosan-based gels. , 2001, Journal of biomedical materials research.

[35]  Dong Il Yoo,et al.  Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer , 1999 .

[36]  J. Bucheńska Polyamide fibers (PA6) with antibacterial properties , 1996 .

[37]  G. Hallmans,et al.  Antibacterial activity of rosin and resin acids in vitro. , 1990, Scandinavian journal of plastic and reconstructive surgery and hand surgery.

[38]  S. Gogolewski,et al.  Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres , 1982 .

[39]  H. M. Heuvel,et al.  Effect of winding speed on the physical structure of as-spun poly(ethylene terephthalate) fibers, including orientation-induced crystallization , 1978 .