On SIC-POVMs in prime dimensions

The generalized Pauli group and its normalizer, the Clifford group, have a rich mathematical structure which is relevant to the problem of constructing symmetric informationally complete POVMs (SIC-POVMs). To date, almost every known SIC-POVM fiducial vector is an eigenstate of a 'canonical' unitary in the Clifford group. I show that every canonical unitary in prime dimensions p > 3 lies in the same conjugacy class of the Clifford group and give a class representative for all such dimensions. It follows that if even one such SIC-POVM fiducial vector is an eigenvector of such a unitary, then all of them are (for a given such dimension). I also conjecture that in all dimensions d, the number of conjugacy classes is bounded above by 3 and depends only on dmod9, and I support this claim with computer computations in all dimensions <48.

[1]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[2]  E. B. Davies,et al.  Information and quantum measurement , 1978, IEEE Trans. Inf. Theory.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  J. V. Corbett,et al.  About SIC POVMs and discrete Wigner distributions , 2005 .

[5]  C. Caves,et al.  Minimal Informationally Complete Measurements for Pure States , 2004, quant-ph/0404137.

[6]  Markus Grassl Tomography of Quantum States in Small Dimensions , 2005, Electron. Notes Discret. Math..

[7]  S. G. Hoggar 64 Lines from a Quaternionic Polytope , 1998 .

[8]  Masahide Sasaki,et al.  Squeezing quantum information through a classical channel: measuring the "quantumness" of a set of quantum states , 2003, Quantum Inf. Comput..

[9]  K. Hellwig Quantum measurements and information theory , 1993 .

[10]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[11]  C. Fuchs,et al.  Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.

[12]  Allen S. Mandel Comment … , 1978, British heart journal.

[13]  Paul Busch,et al.  The determination of the past and the future of a physical system in quantum mechanics , 1989 .

[14]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[15]  E. Prugovec̆ki Information-theoretical aspects of quantum measurement , 1977 .

[16]  S. Barnett,et al.  Optimum unambiguous discrimination between linearly independent symmetric states , 1998, quant-ph/9807023.

[17]  C. Ross Found , 1869, The Dental register.

[18]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[19]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[20]  S. Barnett,et al.  Accessible information and optimal strategies for real symmetrical quantum sources , 1998, quant-ph/9812062.

[21]  Dave Bacon,et al.  Optimal measurements for the dihedral hidden subgroup problem , 2005, Chic. J. Theor. Comput. Sci..

[22]  P. Oscar Boykin,et al.  A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.

[23]  G. D’Ariano,et al.  Informationally complete measurements and group representation , 2003, quant-ph/0310013.

[24]  Ramanujachary Kumanduri,et al.  Number theory with computer applications , 1997 .

[25]  Stefan Weigert Simple Minimal Informationally Complete Measurements for Qudits , 2006 .

[26]  Joseph M. Renes,et al.  Spherical-code key-distribution protocols for qubits , 2004 .

[27]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[28]  K R Parthasarathy,et al.  An Entropic Uncertainty Principle for Quantum Measurements , 2001 .

[29]  Paul Busch,et al.  Informationally complete sets of physical quantities , 1991 .

[30]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[31]  S. Massar Uncertainty relations for positive-operator-valued measures , 2007, quant-ph/0703036.

[32]  J. Finkelstein Pure-state informationally complete and "really" complete measurements (3 pages) , 2004 .

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[35]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[36]  P. Shor Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.

[37]  Alexandre Nobs Die irreduziblen Darstellungen der Gruppen SL2(Zp), insbesondere SL2(Z2). I. Teil , 1976 .

[38]  Ruediger Schack,et al.  Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.