On SIC-POVMs in prime dimensions
暂无分享,去创建一个
[1] L. Ballentine,et al. Quantum Theory: Concepts and Methods , 1994 .
[2] E. B. Davies,et al. Information and quantum measurement , 1978, IEEE Trans. Inf. Theory.
[3] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[4] J. V. Corbett,et al. About SIC POVMs and discrete Wigner distributions , 2005 .
[5] C. Caves,et al. Minimal Informationally Complete Measurements for Pure States , 2004, quant-ph/0404137.
[6] Markus Grassl. Tomography of Quantum States in Small Dimensions , 2005, Electron. Notes Discret. Math..
[7] S. G. Hoggar. 64 Lines from a Quaternionic Polytope , 1998 .
[8] Masahide Sasaki,et al. Squeezing quantum information through a classical channel: measuring the "quantumness" of a set of quantum states , 2003, Quantum Inf. Comput..
[9] K. Hellwig. Quantum measurements and information theory , 1993 .
[10] N. Mermin. Quantum theory: Concepts and methods , 1997 .
[11] C. Fuchs,et al. Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.
[12] Allen S. Mandel. Comment … , 1978, British heart journal.
[13] Paul Busch,et al. The determination of the past and the future of a physical system in quantum mechanics , 1989 .
[14] J. Seidel,et al. Spherical codes and designs , 1977 .
[15] E. Prugovec̆ki. Information-theoretical aspects of quantum measurement , 1977 .
[16] S. Barnett,et al. Optimum unambiguous discrimination between linearly independent symmetric states , 1998, quant-ph/9807023.
[17] C. Ross. Found , 1869, The Dental register.
[18] A. J. Scott. Tight informationally complete quantum measurements , 2006, quant-ph/0604049.
[19] S. Massar,et al. Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.
[20] S. Barnett,et al. Accessible information and optimal strategies for real symmetrical quantum sources , 1998, quant-ph/9812062.
[21] Dave Bacon,et al. Optimal measurements for the dihedral hidden subgroup problem , 2005, Chic. J. Theor. Comput. Sci..
[22] P. Oscar Boykin,et al. A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.
[23] G. D’Ariano,et al. Informationally complete measurements and group representation , 2003, quant-ph/0310013.
[24] Ramanujachary Kumanduri,et al. Number theory with computer applications , 1997 .
[25] Stefan Weigert. Simple Minimal Informationally Complete Measurements for Qudits , 2006 .
[26] Joseph M. Renes,et al. Spherical-code key-distribution protocols for qubits , 2004 .
[27] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[28] K R Parthasarathy,et al. An Entropic Uncertainty Principle for Quantum Measurements , 2001 .
[29] Paul Busch,et al. Informationally complete sets of physical quantities , 1991 .
[30] C. Fuchs,et al. Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.
[31] S. Massar. Uncertainty relations for positive-operator-valued measures , 2007, quant-ph/0703036.
[32] J. Finkelstein. Pure-state informationally complete and "really" complete measurements (3 pages) , 2004 .
[33] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[34] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[35] D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .
[36] P. Shor. Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.
[37] Alexandre Nobs. Die irreduziblen Darstellungen der Gruppen SL2(Zp), insbesondere SL2(Z2). I. Teil , 1976 .
[38] Ruediger Schack,et al. Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.