Sparsity Regularization for Radon Measures

In this paper we establish a regularization method for Radon measures. Motivated from sparse L 1 regularization we introduce a new regularization functional for the Radon norm, whose properties are then analyzed. We, furthermore, show well-posedness of Radon measure based sparsity regularization. Finally we present numerical examples along with the underlying algorithmic and implementation details. We shall, here, see that the number of iterations turn out of utmost importance when it comes to obtain reliable reconstructions of sparse data with varying intensities.

[1]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[2]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[3]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[4]  D. Lorenz,et al.  A semismooth Newton method for Tikhonov functionals with sparsity constraints , 2007, 0709.3186.

[5]  Patrick L. Combettes,et al.  Proximal Thresholding Algorithm for Minimization over Orthonormal Bases , 2007, SIAM J. Optim..

[6]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[7]  Vivek K. Goyal,et al.  Sparsity-Enforced Slice-Selective MRI RF Excitation Pulse Design , 2008, IEEE Transactions on Medical Imaging.

[8]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[9]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[10]  Ronny Ramlau,et al.  A Tikhonov-based projection iteration for nonlinear Ill-posed problems with sparsity constraints , 2006, Numerische Mathematik.

[11]  Dirk A. Lorenz,et al.  Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints , 2008, SIAM J. Sci. Comput..

[12]  J. Craggs Applied Mathematical Sciences , 1973 .

[13]  Otmar Scherzer,et al.  Variational Methods in Imaging , 2008, Applied mathematical sciences.

[14]  I. Daubechies,et al.  Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints , 2007, 0706.4297.

[15]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[16]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..