Multiple indicator cokriging with application to optimal sampling for environmental monitoring
暂无分享,去创建一个
[1] Pierre Goovaerts,et al. Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold , 2001 .
[2] Timothy C. Coburn,et al. Geostatistics for Natural Resources Evaluation , 2000, Technometrics.
[3] E. Pardo‐Igúzquiza. Inference of spatial indicator convariance parameters by maximum likelihood using MLREML , 1998 .
[4] Pierre Goovaerts,et al. Comparative performance of indicator algorithms for modeling conditional probability distribution functions , 1994 .
[5] Eric R. Ziegel,et al. Geostatistics for the Next Century , 1994 .
[6] P. Goovaerts,et al. Comparison of coIK, IK and mIK Performances for Modeling Conditional Probabilities of Categorical Variables , 1994 .
[7] Clayton V. Deutsch,et al. GSLIB: Geostatistical Software Library and User's Guide , 1993 .
[8] A. Solow. On the efficiency of the indicator approach in geostatistics , 1993 .
[9] A. G. Journel,et al. Indicator principal component kriging , 1991 .
[10] Donato Posa,et al. Characteristic behavior and order relations for indicator variograms , 1990 .
[11] William H. Press,et al. Numerical Recipes: FORTRAN , 1988 .
[12] D. Hosmer,et al. Applied Logistic Regression , 1991 .
[13] F. Alabert,et al. Non-Gaussian data expansion in the Earth Sciences , 1989 .
[14] Andrew R. Solow,et al. Mapping by simple indicator kriging , 1986 .
[15] A. Journel. Nonparametric estimation of spatial distributions , 1983 .
[16] D. Myers. Matrix formulation of co-kriging , 1982 .
[17] Linus Schrage,et al. A More Portable Fortran Random Number Generator , 1979, TOMS.