A query model based on normalized log-likelihood

Leveraging information from relevance assessments has been proposed as an effective means for improving retrieval. We introduce a novel language modeling method which uses information from each assessed document and their aggregate. While most previous approaches focus either on features of the entire set or on features of the individual relevant documents, our model exploits features of both the documents and the set as a whole. When evaluated, we show that our model is able to significantly improve over state-of-art feedback methods.

[1]  Thomas Martin Deserno,et al.  The CLEF 2005 Cross-Language Image Retrieval Track , 2005, CLEF.

[2]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[3]  Djoerd Hiemstra,et al.  A Linguistically Motivated Probabilistic Model of Information Retrieval , 1998, ECDL.

[4]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[5]  Chris Buckley,et al.  Relevance Feedback Track Overview: TREC 2008 , 2008, TREC.

[6]  M. de Rijke,et al.  Parsimonious relevance models , 2008, SIGIR '08.

[7]  Amanda Spink,et al.  Use of query reformulation and relevance feedback by Excite users , 2000, Internet Res..

[8]  M. Clements,et al.  The influence of personalization on tag query length in social media search , 2010, Inf. Process. Manag..

[9]  ChengXiang Zhai,et al.  Mining term association patterns from search logs for effective query reformulation , 2008, CIKM '08.

[10]  Ellen M. Voorhees,et al.  Bias and the limits of pooling for large collections , 2007, Information Retrieval.

[11]  Amanda Spink,et al.  From E-Sex to E-Commerce: Web Search Changes , 2002, Computer.

[12]  Paul Clough,et al.  Overview of the 2005 cross-language image retrieval track (ImageCLEF) , 2005 .

[13]  Wouter Weerkamp,et al.  A Generative Language Modeling Approach for Ranking Entities , 2008, INEX.

[14]  Jian-Yun Nie,et al.  Adapting information retrieval to query contexts , 2008, Inf. Process. Manag..

[15]  W. Bruce Croft,et al.  Discovering key concepts in verbose queries , 2008, SIGIR '08.

[16]  M. de Rijke,et al.  A few examples go a long way: constructing query models from elaborate query formulations , 2008, SIGIR '08.

[17]  W. Bruce Croft,et al.  Relevance Models in Information Retrieval , 2003 .

[18]  W. Bruce Croft,et al.  A Markov random field model for term dependencies , 2005, SIGIR '05.

[19]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[20]  Leif Azzopardi,et al.  An analysis on document length retrieval trends in language modeling smoothing , 2008, Information Retrieval.

[21]  CHENGXIANG ZHAI,et al.  A study of smoothing methods for language models applied to information retrieval , 2004, TOIS.

[22]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[23]  Kenney Ng A Maximum Likelihood Ratio Information Retrieval Model , 1999, TREC.