New approximation algorithms for graph coloring

The problem of coloring a graph with the minimum number of colorsis well known to be NP-hard, even restricted to<?Pub Fmt italic>k<?Pub Fmt /italic>-colorable graphs for constant<?Pub Fmt italic>k<?Pub Fmt /italic> ≥ 3. This paper explores theapproximation problem of coloring<?Pub Fmt italic>k<?Pub Fmt /italic>-colorable graphs with as fewadditional colors as possible in polynomial time, with special focus onthe case of <?Pub Fmt italic>k<?Pub Fmt /italic> = 3. The previous best upper bound on the number of colors needed forcoloring 3-colorable <?Pub Fmt italic>n<?Pub Fmt /italic>-vertex graphsin polynomial time was <inline-equation><f><it>o<fen lp="par"><rad><rcd>n/<rad><rcd><rm>log<it>n</it></rm></rcd></rad></rcd></rad><rp post="par"></fen></it></f></inline-equation> colors by Berger and Rompel, improving a bound of<inline-equation><f><it>o<fen lp="par"><rad><rcd>n</rcd></rad><rp post="par"></fen></it></f></inline-equation> colors by Wigderson. This paper presents an algorithmto color any 3-colorable graph with <inline-equation><f><it>o<fen lp="par">n<sup>3/8<inf><rm>polylog<fen lp="par"><it>n</it><rp post="par"></fen></rm></inf></sup><rp post="par"></fen></it></f></inline-equation> <?Pub Caret1>colors, thus breaking an“<?Pub Fmt italic>O((n<supscrpt>1/2-&ogr;(1)</supscrpt>)<?Pub Fmt /italic>barrier”. The algorithm given here is based on examiningsecond-order neighborhoods of vertices, rather than just immediateneighborhoods of vertices as in previous approaches. We extend ourresults to improve the worst-case bounds for coloring<?Pub Fmt italic>k<?Pub Fmt /italic>-colorable graphs for constant<?Pub Fmt italic>k<?Pub Fmt /italic> > 3 as well.

[1]  Avrim Blum,et al.  An O(n0.4)-approximation algorithm for 3-coloring , 1989, STOC '89.

[2]  Ravi B. Boppana,et al.  Approximating maximum independent sets by excluding subgraphs , 1990, BIT.

[3]  Gregory J. Chaitin,et al.  Register allocation and spilling via graph coloring , 2004, SIGP.

[4]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[5]  A. Bonato,et al.  Graphs and Hypergraphs , 2022 .

[6]  A. Blum ALGORITHMS FOR APPROXIMATE GRAPH COLORING , 1991 .

[7]  Martin E. Dyer,et al.  The Solution of Some Random NP-Hard Problems in Polynomial Expected Time , 1989, J. Algorithms.

[8]  Ludek Kucera,et al.  Expected Behavior of Graph Coloring Algorithms , 1977, FCT.

[9]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[10]  Magnús M. Hallórsson A still better performance guarantee for approximate graph coloring , 1993 .

[11]  John Cocke,et al.  A methodology for the real world , 1981 .

[12]  Reuven Bar-Yehuda,et al.  A Local-Ratio Theorem for Approximating the Weighted Vertex Cover Problem , 1983, WG.

[13]  Jonathan S. Turner,et al.  Almost All k-Colorable Graphs are Easy to Color , 1988, J. Algorithms.

[14]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[15]  Sundar Vishwanathan Randomized Online Graph Coloring (Preliminary Version) , 1990, FOCS 1990.

[16]  Avi Wigderson,et al.  Improving the performance guarantee for approximate graph coloring , 1983, JACM.

[17]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1993, STOC.

[18]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[19]  Gregory J. Chaitin,et al.  Register allocation & spilling via graph coloring , 1982, SIGPLAN '82.

[20]  John Cocke,et al.  Register Allocation Via Coloring , 1981, Comput. Lang..

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Avrim Blum,et al.  Some tools for approximate 3-coloring , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[23]  Magnús M. Halldórsson,et al.  A Still Better Performance Guarantee for Approximate Graph Coloring , 1993, Information Processing Letters.