Fano resonance Rabi splitting of surface plasmons

[1]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters , 2018 .

[2]  Zhe Liu,et al.  3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials , 2016, Scientific Reports.

[3]  S. M. Wang,et al.  A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide , 2016, Nature Communications.

[4]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[5]  K. Mizoguchi,et al.  Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System. , 2015, Physical review letters.

[6]  Junjie Li,et al.  Directly patterned substrate-free plasmonic “nanograter” structures with unusual Fano resonances , 2015, Light: Science & Applications.

[7]  C. Kocabas,et al.  Strong coupling between localized and propagating plasmon polaritons. , 2015, Optics letters.

[8]  A. Kern,et al.  Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator. , 2015, Nano letters.

[9]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[10]  Antti-Pekka Eskelinen,et al.  Plasmonic surface lattice resonances at the strong coupling regime. , 2014, Nano letters.

[11]  Nicolas Large,et al.  Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. , 2013, Nano letters.

[12]  S. Maier,et al.  Quantum plasmonics , 2013, Nature Physics.

[13]  Mohsen Rahmani,et al.  Fano resonance in novel plasmonic nanostructures , 2013 .

[14]  H. Giessen,et al.  Microcavity plasmonics: strong coupling of photonic cavities and plasmons , 2013 .

[15]  C. Manzoni,et al.  Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates , 2013, Nature Photonics.

[16]  C. Soukoulis,et al.  Classical analog of electromagnetically induced transparency , 2013 .

[17]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[18]  T. Morimoto,et al.  Coupling Quantum States through a Continuum: A Mesoscopic Multistate Fano Resonance , 2012 .

[19]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[20]  D. R. Chowdhury,et al.  Observing metamaterial induced transparency in individual Fano resonators with broken symmetry , 2011 .

[21]  H. Giessen,et al.  Strong coupling of localized and surface plasmons to microcavity modes. , 2011, Optics letters.

[22]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[23]  P. Nordlander,et al.  Fanoshells: nanoparticles with built-in Fano resonances. , 2010, Nano letters.

[24]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[25]  P. Mulvaney,et al.  Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals. , 2009, Nano letters.

[26]  L. Solymar,et al.  Plasmonic excitations in metallic nanoparticles: resonances, dispersion characteristics and near-field patterns. , 2009, Optics express.

[27]  P. Mulvaney,et al.  Coherent coupling between surface plasmons and excitons in semiconductor nanocrystals , 2009 .

[28]  Niels Verellen,et al.  Fano resonances in individual coherent plasmonic nanocavities. , 2009, Nano letters.

[29]  M. Pettersson,et al.  Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. , 2009, Physical review letters.

[30]  M. Atatüre,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2006, Nature.

[31]  G. Sęk,et al.  Strong coupling in a single quantum dot semiconductor microcavity system , 2006, SPIE OPTO.

[32]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[33]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[34]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[35]  E. N. Economou,et al.  Electric coupling to the magnetic resonance of split ring resonators , 2004, cond-mat/0407369.

[36]  H. Giessen,et al.  Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. , 2003, Physical review letters.

[37]  H. S. Vandiver Quantum , 2000, Posthumanism and the Digital University.

[38]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[39]  J. Eberly,et al.  Cavity Quantum Electrodynamics , 1996 .

[40]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[41]  T. G. Eck,et al.  "Anticrossing" Signals in Resonance Fluorescence , 1967 .

[42]  L. Foldy,et al.  Observation of "Anticrossings" in Optical Resonance Fluorescence , 1963 .

[43]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .