Predicting the Hydrate Stability Zones of Natural Gases Using Artificial Neural Networks
暂无分享,去创建一个
[1] Roger Josef Zemp,et al. Artificial neural networks for the solution of the phase stability problem , 2006 .
[2] E. Frost,et al. Gas hydrate composition and equilibrium data. [Direct and calculated measurements are in close agreement; CO/sub 2/, CH/sub 4/, C/sub 2/H/sub 6/, C/sub 3/H/sub 8/ used] , 1946 .
[3] Donald B. Robinson,et al. Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol , 1985 .
[4] Fabien Rivollet. Etude des propriétés volumétriques (PVT) d'hydrocarbures légers (C1-C4), du dioxyde de carbone et de l'hydrogène sulfuré. Mesures par densimétrie à tube vibrant et modélisation. , 2005 .
[5] B. Tohidi,et al. A novel predictive technique for estimating the hydrate inhibition effects of single and mixed thermodynamic inhibitors , 2008 .
[6] Carolyn A. Koh,et al. Clathrate hydrates of natural gases , 1990 .
[7] E. Dendy Sloan,et al. A changing hydrate paradigm—from apprehension to avoidance to risk management , 2005 .
[8] D. Robinson,et al. Hydrate Formation in Systems Containing Methane, Hydrogen Sulphide and Carbon Dioxide , 1967 .
[9] Alan F. Murray,et al. International Joint Conference on Neural Networks , 1993 .
[10] Ali Elkamel,et al. A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors , 1998 .
[11] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[12] D. Richon,et al. Modeling of thermodynamic properties using neural networks: Application to refrigerants , 2002 .
[13] G. D. Holder,et al. Hydrate dissociation pressures of (methane + ethane + water) existence of a locus of minimum pressures , 1980 .
[14] Dominique Richon,et al. Enhancement of the extended corresponding states techniques for thermodynamic modeling. I. Pure fluids , 2006 .
[15] Tao Xiong,et al. A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..