Chaos and learning in the olfactory bulb

A mathematical model is given for describing activity dynamics, learning, and associative memory in the olfactory bulb. Numerical bifurcation analysis and the calculation of Lyapunov‐exponents suggest that chaotic behavior only occurs in the case of strong excitatory coupling in the mitral layer. A Hebbian‐type learning rule, supplemented with a nonlinear decay term and a selective decreasing term, is defined and analyzed. Slow learning modifies the bulbar activity dynamics hence it plays a crucial role in odor information processing. © 1995 John Wiley & Sons, Inc.

[1]  W. Freeman,et al.  How brains make chaos in order to make sense of the world , 1987, Behavioral and Brain Sciences.

[2]  Valery Petrov,et al.  A map‐based algorithm for controlling low‐dimensional chaos , 1992 .

[3]  B A Huberman,et al.  Chaotic behavior in dopamine neurodynamics. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Hudson,et al.  Regional autonomy in the peripheral processing of odor signals in newborn rabbits , 1987, Brain Research.

[5]  Arun V. Holden,et al.  Mathematical approaches to brain functioning diagnostics , 1991 .

[6]  J. Keener,et al.  Infinite Period Bifurcation and Global Bifurcation Branches , 1981 .

[7]  Hatsuo Hayashi,et al.  Chaotic behavior in the Onchidium giant neuron under sinusoidal stimulation , 1982 .

[8]  Raymond A. Adomaitis,et al.  RESONANCE PHENOMENA IN AN ADAPTIVELY-CONTROLLED SYSTEM , 1991 .

[9]  W. Freeman,et al.  Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. , 1982, Psychophysiology.

[10]  Roberto Serra,et al.  Complex Systems and Cognitive Processes , 1990, Springer Berlin Heidelberg.

[11]  D Schild,et al.  Significance of glomerular compartmentalization for olfactory coding. , 1992, Biophysical journal.

[12]  B. Baird,et al.  Relation of Olfactory EEG to Behavior: Spatial Analysis , 1987 .

[13]  T. J. Willey,et al.  The ultrastructure of the cat olfactory bulb , 1973, The Journal of comparative neurology.

[14]  Hatsuo Hayashi,et al.  Chaotic nature of bursting discharges in the Onchidium pacemaker neuron , 1992 .

[15]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Hogg,et al.  Attractors on finite sets: The dissipative dynamics of computing structures. , 1985, Physical review. A, General physics.

[17]  Marilyn Bohl,et al.  Information processing , 1971 .

[18]  R. Hudson,et al.  Perceptual Performance in Peripherally Reduced Olfactory Systems , 1990 .

[19]  Helmut Riedel,et al.  The dynamics of hebbian synapses can be stabilized by a nonlinear decay term , 1992, Neural Networks.

[20]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[21]  P. Brennan,et al.  Impairment of olfactory memory by local infusions of non-selective excitatory amino acid receptor antagonists into the accessory olfactory bulb , 1989, Neuroscience.

[22]  I. Tsuda Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind , 1991 .

[23]  G. Barna,et al.  Computer simulation in brain science: ‘Normal’ and ‘abnormal’ dynamic behaviour during synaptic transmission , 1988 .

[24]  M. Zak Terminal attractors for addressable memory in neural networks , 1988 .

[25]  I. Tsuda,et al.  A new method for computing Lyapunov exponents , 1993 .

[26]  D. Schild,et al.  Chemosensory Information Processing , 1990, NATO ASI Series.

[27]  J J Hopfield,et al.  Neural computation by concentrating information in time. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Mackey,et al.  Temporal Disorder in Human Oscillatory Systems , 1987 .

[29]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[30]  John W. Scott,et al.  Central processing of olfaction , 1991, The Journal of Steroid Biochemistry and Molecular Biology.

[31]  P. Rapp,et al.  Dynamics of spontaneous neural activity in the simian motor cortex: The dimension of chaotic neurons , 1985 .

[32]  Ichiro Tsuda,et al.  Dynamic link of memory--Chaotic memory map in nonequilibrium neural networks , 1992, Neural Networks.

[33]  D. Kelly,et al.  Stability in contractive nonlinear neural networks , 1990, IEEE Transactions on Biomedical Engineering.

[34]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[35]  A. Babloyantz,et al.  Evidence of Chaotic Dynamics of Brain Activity During the Sleep Cycle , 1985 .

[36]  E. Adrian,et al.  The electrical activity of the mammalian olfactory bulb. , 1950, Electroencephalography and clinical neurophysiology.

[37]  W. Freeman,et al.  Spatial EEG patterns, non-linear dynamics and perception: the neo-sherringtonian view , 1985, Brain Research Reviews.

[38]  P. Brennan,et al.  Olfactory recognition: a simple memory system. , 1990, Science.