Stability of ionically bonded surfaces in ionizing environments

Abstract We present criteria for the stability of ionic materials in ionizing environments, confining ourselves to cases where the core hole Auger decay mechanism of Knotek and Feibelman is applicable. The main result is that Auger induced decomposition will not occur unless the cation species in the solid is ionized down to a relatively deep filled shell. This shell must be sufficiently deep that an Auger decay starting from it will release the energy necessary for decomposition. The degree to which covalency in bonding affects stability is discussed. We show how these concepts can be applied by examination of the periodic table and a table of electron binding energies.

[1]  T. A. Carlson,et al.  Experimental Evidence for Double Electron Emission in an Auger Process , 1965 .

[2]  P. Feibelman,et al.  Ion desorption by core-hole Auger decay , 1978 .

[3]  A. A. Vorob’ev,et al.  Radiation stability of ionic crystalline materials , 1977 .

[4]  V. Rehn,et al.  Photon-stimulated desorption of ions , 1979 .

[5]  J. Varley A Mechanism for the Displacement of Ions in an Ionic Lattice , 1954, Nature.

[6]  H. Tokutaka,et al.  The (100) surfaces of alkali halides: I. The air and vacuum cleaved surfaces , 1970 .

[7]  W. Spicer,et al.  An Auger analysis of the SiO2‐Si interface , 1976 .

[8]  A. George Lieberman ARPA/NBS workshop IV. surface analysis for silicon devices , 1976 .

[9]  V. Agranovich,et al.  Problems of modeling radiation damage in crystals , 1976 .

[10]  H. Tokutaka,et al.  The (100) surfaces of alkali halides. II. Electron stimulated dissociation , 1970 .

[11]  A. E. Vries,et al.  Energy distributions of atoms sputtered from alkali halides by 540 eV electrons , 1978 .

[12]  R. Gomer,et al.  Desorption from Metal Surfaces by Low‐Energy Electrons , 1964 .

[13]  H. Pabst Ionization effects on damage yield in ion irradiation of semiconductors , 1975 .

[14]  C. C. Klick Mechanism for Coloration of Alkali Halides at Low Temperatures , 1960 .

[15]  Peter J. Feibelman,et al.  Reinterpretation of electron-stimulated desorption data from chemisorption systems , 1978 .

[16]  P. Redhead INTERACTION OF SLOW ELECTRONS WITH CHEMISORBED OXYGEN , 1964 .

[17]  B Carrière,et al.  A study of the charging and dissociation of SiO2 Surfaces by AES , 1977 .

[18]  P. .. Seregin,et al.  A study of radiation defects in solids by means of Mössbauer spectroscopy , 1978 .

[19]  A. Kiv,et al.  The subthreshold radiation effects in semiconductors , 1975 .

[20]  J. Yates,et al.  DESORPTION BY ELECTRON IMPACT: OXYGEN ADSORBED ON TUNGSTEN. , 1968 .

[21]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[22]  W. Ellis Auger/loss studies of uranium, uranium oxidation, UO2, U308, and UF4☆ , 1976 .

[23]  R. Clausing,et al.  Auger catalog calculated transition energies listed by energy and element , 1973 .

[24]  M. Nishijima,et al.  Electron-Impact Desorption of Ions from Polycrystalline Tungsten , 1970 .

[25]  R. White,et al.  Measurement of the Relative Abundances and Recoil‐Energy Spectra of Fragment Ions Produced as the Initial Consequences of X‐Ray Interaction with CH3I, HI, and DI , 1966 .

[26]  J. Varley Discussion of some mechanisms of F-centre formation in alkali halides , 1962 .

[27]  D. L. Dexter Varley Mechanism for Defect Formation in Alkali Halides , 1960 .

[28]  Herbert N. Hersh,et al.  Proposed Excitonic Mechanism of Color-Center Formation in Alkali Halides , 1966 .

[29]  P. W. Palmberg,et al.  Surface dissociation of potassium chloride by low-energy electron bombardment , 1967 .

[30]  S. Hüfner,et al.  Thermal shift of ESCA binding energies , 1972 .

[31]  P. Townsend,et al.  Slow electron induced defects in alkali halides , 1968 .

[32]  S. H. Vosko,et al.  MECHANISM FOR PRODUCTION OF INTERSTITIALS IN KCI BY X RAYS AT LOW TEMPERATURES , 1961 .

[33]  F. Williams Theory of Defect Formation in Alkali Halides by Ionizing Radiation , 1962 .

[34]  Simon Thomas,et al.  Electron‐irradiation effect in the Auger analysis of SiO2 , 1974 .