Phase equilibrium modelling of partial melting in the upper mantle: A comparison between different modelling methodologies and experimental results

[1]  C. Heinrich,et al.  Physical transport of magmatic sulfides promotes copper enrichment in hydrothermal ore fluids , 2022, Geology.

[2]  B. Kaus,et al.  MAGEMin, an Efficient Gibbs Energy Minimizer: Application to Igneous Systems , 2022, Geochemistry, Geophysics, Geosystems.

[3]  F. Spera,et al.  A comparative study of two-phase equilibria modeling tools: MORB equilibrium states at variable pressure and H2O concentrations , 2021, American Mineralogist.

[4]  J. Connolly,et al.  GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria , 2021, Journal of Metamorphic Geology.

[5]  T. Holland,et al.  Corrigendum to: A Thermodynamic Model for the Subsolidus Evolution and Melting of Peridotite , 2021, Journal of Petrology.

[6]  F. Gervais,et al.  Testing solution models for phase equilibrium (forward) modeling of partial melting experiments , 2021, Contributions to Mineralogy and Petrology.

[7]  Xiaolin Xiong,et al.  Element loss to platinum capsules in high-temperature–pressure experiments , 2020 .

[8]  M. García-Arias Consistency of the activity–composition models of Holland, Green, and Powell (2018) with experiments on natural and synthetic compositions: A comparative study , 2020, Journal of Metamorphic Geology.

[9]  J. Moyen,et al.  Performing process-oriented investigations involving mass transfer using Rcrust: a new phase equilibrium modelling tool , 2019, Special Publications.

[10]  P. Lanari,et al.  Modeling Metamorphic Rocks Using Equilibrium Thermodynamics and Internally Consistent Databases: Past Achievements, Problems and Perspectives , 2018, Journal of Petrology.

[11]  R. Palin,et al.  A comparison of observed and thermodynamically predicted phase equilibria and mineral compositions in mafic granulites , 2018, Journal of Metamorphic Geology.

[12]  R. Powell,et al.  Melting of Peridotites through to Granites: A Simple Thermodynamic Model in the System KNCFMASHTOCr , 2018 .

[13]  R. Powell,et al.  Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks , 2016 .

[14]  G. Stevens,et al.  Rcrust: a tool for calculating path‐dependent open system processes and application to melt loss , 2016 .

[15]  Y. Brugier,et al.  Fe pre-enrichment: A new method to counteract iron loss in experiments on basaltic melts , 2015 .

[16]  M. Ghiorso,et al.  An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS , 2015, Contributions to Mineralogy and Petrology.

[17]  T. Holland,et al.  A Simple Thermodynamic Model for Melting of Peridotite in the System NCFMASOCr , 2015 .

[18]  P. Tropper,et al.  How well do pseudosection calculations reproduce simple experiments using natural rocks: an example from high- high- granulites of the Bohemian Massif P T T P , 2015 .

[19]  M. Ghiorso,et al.  Thermodynamic Model for Energy-Constrained Open-System Evolution of Crustal Magma Bodies Undergoing Simultaneous Recharge, Assimilation and Crystallization: the Magma Chamber Simulator , 2014 .

[20]  R. Powell,et al.  New mineral activity–composition relations for thermodynamic calculations in metapelitic systems , 2014 .

[21]  E. Duesterhoeft,et al.  THERIAK_D: An add‐on to implement equilibrium computations in geodynamic models , 2013 .

[22]  G. Stevens,et al.  Is the Crucible Reproducible? Reconciling Melting Experiments with Thermodynamic Calculations , 2011 .

[23]  Roger Powell,et al.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .

[24]  M. Ghiorso,et al.  Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems , 2010 .

[25]  Konstantin Petrakakis,et al.  The computation of equilibrium assemblage diagrams with Theriak/Domino software , 2010 .

[26]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[27]  T. Grove,et al.  Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules , 2008 .

[28]  R. Powell,et al.  Progress relating to calculation of partial melting equilibria for metapelites , 2007 .

[29]  Rocrn Pownlr,et al.  Calculated mineral equilibria in the pelite system, KFMASH , 2007 .

[30]  J. Blundy,et al.  SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis , 2006 .

[31]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[32]  C. Langmuir,et al.  A hydrous melting and fractionation model for mid‐ocean ridge basalts: Application to the Mid‐Atlantic Ridge near the Azores , 2004 .

[33]  F. Schilling,et al.  Temperature distribution in piston-cylinder assemblies: Numerical simulations and laboratory experiments , 2004 .

[34]  M. Hirschmann,et al.  Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2-3 GPa , 2003 .

[35]  A. Kent,et al.  Near-solidus Melting of the Shallow Upper Mantle: Partial Melting Experiments on Depleted Peridotite , 2003 .

[36]  R. Powell,et al.  Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation , 2003 .

[37]  M. Hirschmann,et al.  Partial melting experiments on a MORB‐like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate , 2003 .

[38]  James A. D. Connolly,et al.  An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions , 2002 .

[39]  Mark S. Ghiorso,et al.  The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa , 2002 .

[40]  I. Kushiro Partial Melting Experiments on Peridotite and Origin of Mid-Ocean Ridge Basalt , 2001 .

[41]  R. Powell,et al.  Calculation of Phase Relations Involving Haplogranitic Melts Using an Internally Consistent Thermodynamic Dataset , 2001 .

[42]  Worley,et al.  The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 , 2000 .

[43]  Worley,et al.  High‐precision relative thermobarometry: theory and a worked example , 2000 .

[44]  D. Green,et al.  Peridotite Melting at 1.0 and 1.5 GPa: an Experimental Evaluation of Techniques using Diamond Aggregates and Mineral Mixes for Determination of Near-solidus Melts , 1999 .

[45]  Paul D. Asimow,et al.  Algorithmic modifications extending MELTS to calculate subsolidus phase relations , 1998 .

[46]  R. Powell,et al.  Calculating phase diagrams involving solid solutions via non‐linear equations, with examples using THERMOCALC , 1998 .

[47]  M. Ghiorso,et al.  Calculation of peridotite partial melting from thermodynamic models of minerals and melts I. Review of methods and comparison with experiments , 1998 .

[48]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[49]  M. Hirschmann,et al.  The Effect of Alkalis on the Silica Content of Mantle-Derived Melts , 1998 .

[50]  G. Stevens,et al.  Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths , 1997 .

[51]  R. Powell,et al.  Thermodynamics of order-disorder in minerals: I. Symmetric formalism applied to minerals of fixed composition , 1996 .

[52]  R. Powell,et al.  Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions , 1996 .

[53]  D. London,et al.  Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses , 1996 .

[54]  D. Green,et al.  Quests for low-degree mantle melts , 1996, Nature.

[55]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[56]  M. Ghiorso,et al.  Thermodynamics of multicomponent pyroxenes: III. Calibration of Fe2+(Mg)-1, TiAl2(MgSi2)-1, TiFe23+(MgSi2)-1, AlFe3+(MgSi)-1, NaAl(CaMg)-1, Al2(MgSi)-1 and Ca(Mg)-1 exchange reactions between pyroxenes and silicate melts , 1994 .

[57]  E. Stolper,et al.  Determining the composition of high-pressure mantle melts using diamond aggregates , 1994 .

[58]  T. Shimazaki,et al.  Melting study of a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[59]  T. Hor On the formulation of simple mixing models for complex phases , 1993 .

[60]  Roger Powell,et al.  An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2 , 1990 .

[61]  D. Green,et al.  Anhydrous Partial Melting of a Fertile and Depleted Peridotite from 2 to 30 kb and Application to Basalt Petrogenesis , 1988 .

[62]  R. Berman,et al.  Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-F , 1988 .

[63]  R. Powell,et al.  An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program , 1988 .

[64]  Thomas H. Brown,et al.  The computation of chemical equilibrium in complex systems containing non-ideal solutions , 1987 .

[65]  J. Connolly,et al.  An algorithm and computer program for calculating composition phase diagrams , 1987 .

[66]  E. Takahashi Melting of a dry peridotite KLB‐1 up to 14 GPa: Implications on the Origin of peridotitic upper mantle , 1986 .

[67]  R. Powell,et al.  An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results , 1985 .

[68]  R. Powell Geothermometry and geobarometry: a discussion , 1985, Journal of the Geological Society.

[69]  T. Grove Use of FePt alloys to eliminate the iron loss problem in 1 atmosphere gas mixing experiments: Theoretical and practical considerations , 1982 .

[70]  Keisuke Ito,et al.  The Composition of Liquids Formed by Partial Melting of Eclogites at High Temperatures and Pressures , 1974, The Journal of Geology.

[71]  D. B. Clarke,et al.  Determination of the liquid composition in experimental samples: discrepancies between microprobe analysis and other methods , 1973 .

[72]  R. B. Merrill,et al.  Absorption of iron by platinum capsules in high pressure rock melting experiments , 1973 .

[73]  A. R. Cooper,et al.  Changes in Composition during Electron Micro‐Probe Analysis of K2O–SrO–SiO2 Glass , 1966 .