Heuristic feature selection for shaving tool wear classification

In this paper, we develop and apply feature extraction and selection techniques to classify tool wear in the shaving process. Because shaving tool condition monitoring is not well-studied, we extract both traditional and novel features from accelerometer signals collected from the shaving machine. We then apply a heuristic feature selection technique to identify key features and classify the tool condition. Run-to-life data from a shop-floor application is used to validate the proposed technique.Copyright © 2016 by ASME