A generalization of Kneser's Addition Theorem

Abstract Let A = ( A 1 , … , A m ) be a sequence of finite subsets from an additive abelian group G . Let Σ l ( A ) denote the set of all group elements representable as a sum of l elements from distinct terms of A , and set H = stab ( Σ l ( A ) ) = { g ∈ G : g + Σ l ( A ) = Σ l ( A ) } . Our main theorem is the following lower bound: | Σ l ( A ) | ⩾ | H | ( 1 − l + ∑ Q ∈ G / H min { l , | { i ∈ { 1 , … , m } : A i ∩ Q ≠ ∅ } | } ) . In the special case when m = l = 2 , this is equivalent to Kneser's Addition Theorem, and indeed we obtain a new proof of this result. The special case when every A i has size one is a new result concerning subsequence sums which extends some recent work of Bollobas–Leader, Hamidoune, Hamidoune–Ordaz–Ortuno, Grynkiewicz, and Gao, and resolves two recent conjectures of Gao, Thangadurai, and Zhuang.

[1]  M. Kneser,et al.  Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .

[2]  D. Kleitman,et al.  On a combinatorial problem of Erdős , 1966 .

[3]  Melvyn B. Nathanson,et al.  Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .

[4]  John E. Olson An addition theorem for finite Abelian groups , 1977 .

[5]  Arie Bialostocki,et al.  On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings , 1992, Discret. Math..

[6]  A. Cauchy Oeuvres complètes: Recherches sur les nombres , 2009 .

[7]  Paul D. Seymour,et al.  Spanning Trees of Different Weights , 1990, Polyhedral Combinatorics.

[8]  S. S. Pillai On the addition of residue classes , 1938 .

[9]  Oscar Ordaz,et al.  On a Combinatorial Theorem of Erdös, Ginzburg and Ziv , 1998, Comb. Probab. Comput..

[10]  Paul D. Seymour,et al.  A simpler proof and a generalization of the zero-trees theorem , 1991, J. Comb. Theory, Ser. A.

[11]  K. Thanigasalam,et al.  On additive number theory , 1968 .

[12]  Weidong Gao,et al.  Addition theorems on the cyclic groups of order pl , 2008, Discret. Math..

[13]  David J. Grynkiewicz On a Conjecture of Hamidoune for Subsequence Sums , 2005 .

[14]  David J. Grynkiewicz,et al.  On a partition analog of the Cauchy-Davenport theorem , 2005 .

[15]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[16]  J. H. B. Kemperman,et al.  On small sumsets in an abelian group , 1960 .

[17]  H. L. Abbott,et al.  On A Combinatorial Problem of Erdös , 1969, Canadian Mathematical Bulletin.

[18]  John E. Olson On a combinatorial problem of Erds, Ginzburg, and Ziv , 1976 .

[19]  Hui-Qin Cao An Addition Theorem on the Cyclic Group Zpα qβ , 2006, Electron. J. Comb..

[20]  Yahya Ould Hamidoune Subsequence Sums , 2003, Comb. Probab. Comput..

[21]  James G. Oxley,et al.  Matroid theory , 1992 .

[22]  Weidong Gao,et al.  A Combinatorial Problem on Finite Abelian Groups , 1996 .

[23]  Yahya Ould Hamidoune On weighted sums in abelian groups , 1996, Discret. Math..

[24]  Béla Bollobás,et al.  The Number of k-Sums Modulo k , 1999 .

[25]  Zoltán Füredi,et al.  On zero-trees , 1992, J. Graph Theory.

[26]  John E. Olson,et al.  A combinatorial problem on finite Abelian groups, I , 1969 .