Clustering Segregation with Ultraviolet Luminosity in Lyman Break Galaxies at z~3 and Its Implications

We report on the clustering properties of Lyman break galaxies (LBGs) at z ~ 3. The correlation length of flux-limited samples of LBGs depends on their rest-frame ultraviolet (UV) luminosity at λ ~ 1700 Å, with fainter galaxies being less strongly clustered in space. We have used three samples with progressively fainter flux limits: two extracted from our ground-based survey and one from the Hubble Deep Fields (both North and South). The correlation length decreases by a factor of ≈3 over the range of limiting magnitudes that we have probed, namely, 25 ≲ ℛ ≲ 27, suggesting that samples with a fainter UV luminosity limit include galaxies with smaller mass. We have compared the observed scaling properties of the clustering strength with those predicted for cold dark matter (CDM) halos and found that (1) the clustering strength of LBGs follows, within the errors, the same scaling law with the volume density as the halos; and (2) the scaling law predicted for the galaxies using the halo mass spectrum and a number of models for the relationship that maps the halos' mass into the galaxies' UV luminosity depends only on how tightly mass and UV luminosity correlate but is otherwise insensitive to the details of the models. We interpret these results as additional evidence that the strong spatial clustering of LBGs is due to galaxy biasing, supporting the theory of biased galaxy formation and gravitational instability as the primary physical mechanism for the formation of structure. We have also fitted models of the mass-UV luminosity relationship to the data to reproduce simultaneously from the CDM halo mass spectrum the dependence of the correlation length with the UV luminosity and the luminosity function. We have found that (1) a scale invariant relationship between mass and UV luminosity (e.g., a power law) is not supported by the observations, suggesting that the properties of star formation of galaxies change along the mass spectrum of the observed LBGs; (2) the scatter of the UV luminosity of LBGs of given mass must be relatively small for massive LBGs, suggesting that the mass is an important parameter in regulating the activity of star formation in these systems; and (3) the fraction of massive halos at z ~ 3 that are not observed in UV-selected surveys is not large. From the fits, for a given choice of the cosmology, one can assign a scale of mass to the LBGs. For example, if Ω = 0.3 and ΩΛ = 0.7, the average mass of galaxies with luminosity ℛ = 23, 25.5, and 27.0 is = 2.5, 0.9, and 0.4 × 1012 M☉, respectively. The numbers are ≈2 times larger and ≈10 times smaller in an open universe with Ω = 0.2 and ΩΛ = 0 and in the Einstein-de Sitter cosmologies, respectively.

[1]  Massimo Stiavelli,et al.  WFPC2 Observations of the Hubble Deep Field South , 2000, astro-ph/0010245.

[2]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[3]  D. Hogg,et al.  Caltech Faint Galaxy Redshift Survey. X. A Redshift Survey in the Region of the Hubble Deep Field North , 1999, astro-ph/9912048.

[4]  E. Gaztañaga,et al.  Inverting the angular correlation function , 1999, astro-ph/9906289.

[5]  S. Faber,et al.  Young Galaxies: What Turns Them On? , 1999, astro-ph/9906104.

[6]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[7]  Y. Jing Accurate Determination of the Lagrangian Bias for the Dark Matter Halos , 1999, astro-ph/9901138.

[8]  A. Heavens,et al.  The role of star formation in the Tully-Fisher law , 1999, astro-ph/9901016.

[9]  C. Lacey,et al.  How Dark Matter Halos Cluster in Lagrangian Space , 1998, astro-ph/9811477.

[10]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[11]  S. White,et al.  The structure and clustering of Lyman-break galaxies , 1998, astro-ph/9807341.

[12]  D. Weinberg,et al.  The Clustering of High-Redshift Galaxies in the Cold Dark Matter Scenario , 1998, astro-ph/9806257.

[13]  Rodger I. Thompson,et al.  Near-Infrared Camera and Multi-Object Spectrometer Observations of the Hubble Deep Field: Observations, Data Reduction, and Galaxy Photometry , 1999 .

[14]  R. Cen,et al.  Physical Bias of Galaxies from Large-Scale Hydrodynamic Simulations , 1998, astro-ph/9809370.

[15]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[16]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[17]  M. Giavalisco,et al.  Infrared Observations of Nebular Emission Lines from Galaxies at z ≃ 3 , 1998, astro-ph/9806219.

[18]  S. Matarrese,et al.  On the Spatial Distribution of Dark Matter Halos , 1998, astro-ph/9804250.

[19]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998 .

[20]  L. Moscardini,et al.  The clustering of Lyman-break galaxies , 1998, Monthly Notices of the Royal Astronomical Society.

[21]  A. Szalay,et al.  Evolution of the Angular Correlation Function , 1998, astro-ph/9803047.

[22]  C. Baugh,et al.  The seeds of rich galaxy clusters in the Universe , 1998, Nature.

[23]  M. Dickinson,et al.  The Angular Clustering of Lyman-Break Galaxies at Redshift z ~ 3 , 1998, astro-ph/9802318.

[24]  S. Matarrese,et al.  Excursion set approach to the clustering of dark matter haloes in Lagrangian space , 1998, astro-ph/9801290.

[25]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[26]  A. Heavens,et al.  Eulerian bias and the galaxy density field , 1997, astro-ph/9708031.

[27]  H. Yee,et al.  Optical-Infrared Spectral Energy Distributions of z > 2 Lyman Break Galaxies , 1997, astro-ph/9712216.

[28]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[29]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[30]  Y. Jing,et al.  Confronting Cold Dark Matter Cosmologies with Strong Clustering of Lyman Break Galaxies at z ~ 3 , 1997, astro-ph/9710090.

[31]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[32]  The Dependence of Galaxy Clustering on Luminosity , 1997 .

[33]  D. Spergel,et al.  The Formation of Disk Galaxies , 1996, astro-ph/9611226.

[34]  Jr.,et al.  The Las Campanas Redshift Survey galaxy—galaxy autocorrelation function , 1996, astro-ph/9611206.

[35]  D. Calzetti Reddening and star formation in starburst galaxies , 1996, astro-ph/9610184.

[36]  The evolution of galaxy clustering , 1996, astro-ph/9608151.

[37]  L. Moscardini,et al.  Redshift evolution of clustering , 1996, astro-ph/9608004.

[38]  R. Carlberg,et al.  Faint K-selected Galaxy Correlations and Clustering Evolution , 1996, astro-ph/9605024.

[39]  G. Kauffmann,et al.  Galaxy formation and large scale bias , 1995, astro-ph/9512009.

[40]  W. Waller The ultraviolet universe at low and high redshift : probing the progress of galaxy evolution : College Park, MD May 1997 , 1997 .

[41]  N. Vogt,et al.  Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field , 1996, astro-ph/9612239.

[42]  D. Hogg,et al.  Redshift Clustering in the Hubble Deep Field , 1996, astro-ph/9608121.

[43]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[44]  Mark Dickinson,et al.  Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field , 1996 .

[45]  R. Carlberg,et al.  The Ω0 Dependence of the Evolution of ξ(r) , 1996, astro-ph/9604071.

[46]  M. Fukugita,et al.  Constraints on the Cosmic Structure Formation Models from Early Formation of Giant Galaxies , 1996, astro-ph/9604034.

[47]  F. Duccio Macchetto,et al.  Hubble space telescope imaging of star-forming galaxies at redshifts Z>3 , 1996 .

[48]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[49]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[50]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[51]  A. Fruchter,et al.  The Hubble Deep Field: Images , 1995 .

[52]  O. Fèvre,et al.  The Canada France Redshift Survey VIII: Evolution of the clustering of galaxies from z~1 , 1995, astro-ph/9510090.

[53]  M. Pettini,et al.  Lyman Limit Imaging of High Redshift Galaxies. III. New Observations of 4 QSO Fields , 1995 .

[54]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[55]  S. Maddox,et al.  The Stromlo-APM Redshift Survey II. Variation of Galaxy Clustering with Morphology and Luminosity , 1994 .

[56]  Changbom Park,et al.  Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey , 1994 .

[57]  J. Villumsen,et al.  ON THE EVOLUTION OF CLUSTERING AND THE BIASED GALAXY FORMATION SCENARIO , 1994 .

[58]  R. Cen,et al.  The correlation function of flux-limited X-ray clusters , 1994, astro-ph/9404010.

[59]  R. Croft,et al.  The correlation function of rich clusters of galaxies in CDM-like models , 1993, astro-ph/9310017.

[60]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[61]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[62]  N. Bahcall,et al.  The cluster correlation function : consistent results from an automated survey , 1992 .

[63]  Puragra Guhathakurta,et al.  The clustering of faint galaxies , 1991 .

[64]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[65]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[66]  L. Costa,et al.  Segregation properties of galaxies , 1990 .

[67]  C. Baugh,et al.  The Epoch of Galaxy Formation , 1997, astro-ph/9703111.

[68]  Amos Yahil,et al.  On the universality of the two-point galaxy correlation function , 1988 .

[69]  A. Hamilton,et al.  Evidence for biasing in the CfA survey , 1988 .

[70]  C. Frenk,et al.  Uncertainties in the cluster-cluster correlation function. , 1986 .

[71]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[72]  Peter A. Shaver,et al.  Clustering at high redshifts. , 1986 .

[73]  J. Peacock,et al.  The statistics of maxima in primordial density perturbations , 1985 .

[74]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[75]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[76]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[77]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .