A New Adaptive Sampling Technique for Monte Carlo Global Illumination

Monte Carlo is the only choice of physically correct method to compute the problem of global illumination in the field of realistic image synthesis. Adaptive sampling is an appealing tool to eliminate noise, which is one of the main problems of Monte Carlo based global illumination algorithms. In this paper, we investigate the use of entropy in the domain of information theory to measure pixel quality and to do adaptive sampling. Especially we explore the nonextensive Tsallis entropy, in which a real number q is introduced as the entropic index that presents the degree of nonextensivity, to evaluate pixel quality. By utilizing the least-squares design, an entropic index q can be obtained systematically to run adaptive sampling effectively. Implementation results show that the Tsallis entropy driven adaptive sampling significantly outperforms the existing methods. To our knowledge, this may be the first try on the systematic choice of an appropriate entropic index to Tsallis entropy in the engineering fields.

[1]  WhittedTurner An improved illumination model for shaded display , 1979 .

[2]  Samuel P. Uselton,et al.  Statistically optimized sampling for distributed ray tracing , 1985, SIGGRAPH.

[3]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[4]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[5]  Werner Purgathofer,et al.  A statistical method for adaptive stochastic sampling , 1986, Comput. Graph..

[6]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[7]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[8]  J. Painter,et al.  Antialiased ray tracing by adaptive progressive refinement , 1989, SIGGRAPH.

[9]  Masahiro Nakagawa,et al.  Equivalent smectic C liquid crystal energies , 1991 .

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[12]  J. Arvo,et al.  Unbiased Variance Reduction for Global Illumination , 1994 .

[13]  Henrik Wann Jensen,et al.  Adaptive Smpling and Bias Estimation in Path Tracing , 1997, Rendering Techniques.

[14]  James Arvo,et al.  A framework for realistic image synthesis , 1997, SIGGRAPH.

[15]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[16]  Gary W. Meyer,et al.  A perceptually based adaptive sampling algorithm , 1998, SIGGRAPH.

[17]  J. Crutchfield,et al.  Measures of statistical complexity: Why? , 1998 .

[18]  Donald P. Greenberg A framework for realistic image synthesis , 1999, CACM.

[19]  Sumiyoshi Abe,et al.  Correlation induced by Tsallis’ nonextensivity , 1999 .

[20]  Mateu Sbert,et al.  An Information Theory Framework for the Analysis of Scene Complexity , 1999, Comput. Graph. Forum.

[21]  Carlo H. Séquin,et al.  Tapestry: A Dynamic Mesh-based Display Representation for Interactive Rendering , 2000, Rendering Techniques.

[22]  S. Abe Axioms and uniqueness theorem for Tsallis entropy , 2000, cond-mat/0005538.

[23]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[24]  M. Baranger,et al.  Why Tsallis statistics , 2002 .

[25]  Mateu Sbert,et al.  New Contrast Measures for Pixel Supersampling , 2002 .

[26]  Mateu Sbert,et al.  Entropy-based Adaptive Sampling , 2003, Graphics Interface.

[27]  Mateu Sbert,et al.  Refinement Criteria Based on f-Divergences , 2003, Rendering Techniques.

[28]  A. R. Plastino,et al.  Why Tsallis’ statistics? , 2004 .

[29]  Márcio Portes de Albuquerque,et al.  Image thresholding using Tsallis entropy , 2004, Pattern Recognit. Lett..

[30]  Sumiyoshi Abe Tsallis entropy: how unique? , 2004 .

[31]  Jacek M. Zurada,et al.  An information-theoretic approach to estimating ultrasound backscatter characteristics , 2004, Comput. Biol. Medicine.

[32]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[33]  Constantino Tsallis,et al.  Nonextensive statistical mechanics: A brief introduction , 2004 .