B-F bonding and reactivity analysis of mono- and perfluoro-substituted derivatives of closo-borate anions (6, 10, 12): a computational study

[1]  Xue Zhao,et al.  Progress in three-dimensional aromatic-like closo-dodecaborate , 2021 .

[2]  Carlos Cárdenas,et al.  Links among the Fukui potential, the alchemical hardness and the local hardness of an atom in a molecule , 2021, J. Comput. Chem..

[3]  M. Holthausen,et al.  1-Aza-2,4-disilabicyclo[1.1.0]butanes with Superelongated C-N σ-Bonds. , 2021, Journal of the American Chemical Society.

[4]  Renjie Chen,et al.  Na electrodeposits: a new decaying mechanism for all-solid-state Na batteries revealed by synchrotron X-ray tomography , 2021 .

[5]  Young-Su Lee,et al.  Synthesis and crystal structures of decahydro-closo-decaborates of the divalent cations of strontium and manganese , 2021 .

[6]  Miguel A. Esteruelas,et al.  Assembly of a Dihydrideborate and Two Aryl Nitriles to Form a C,N,N′-Pincer Ligand Coordinated to Osmium , 2021, Organometallics.

[7]  N. Kuznetsov,et al.  Fused 1,2-Diboraoxazoles Based on closo-Decaborate Anion–Novel Members of Diboroheterocycle Class , 2021, Molecules.

[8]  Zhipan Liu,et al.  Reaction prediction via atomistic simulation: from quantum mechanics to machine learning , 2020, iScience.

[9]  R. Černý,et al.  The Crystal Chemistry of Inorganic Hydroborates , 2020, Chemistry.

[10]  Rodrigo D. Tosso,et al.  Combined MD/QTAIM techniques to evaluate ligand-receptor interactions. Scope and limitations. , 2020, European journal of medicinal chemistry.

[11]  L. Domingo,et al.  Understanding the Origin of the Regioselectivity in Non-Polar [3+2] Cycloaddition Reactions through the Molecular Electron Density Theory , 2020, Organics.

[12]  Caio L. Firme Local potential energy: A novel QTAIM tool to quantify the binding energy of classical hydrogen bonds , 2020 .

[13]  A. Frontera,et al.  Exploration of Br⋯O halogen bonding interactions in dinuclear vanadium(V) complexes with Schiff base ligands , 2020, Polyhedron.

[14]  N. Kuznetsov,et al.  Theoretical study of closo-borate derivatives of general type [BnHn-1COR]2– (n = 6, 10, 12; R = H, CH3, NH2, OH, OCH3) – Borylated analogue of organic carbonyl compounds , 2020 .

[15]  A. Wu,et al.  Boron-Containing Lipids and Liposomes: New Conjugates of Cholesterol with Polyhedral Boron Hydrides. , 2020, Chemistry.

[16]  V. A. Kulikova,et al.  Thermodynamic Hydricity of Small Borane Clusters and Polyhedral closo-Boranes † , 2020, Molecules.

[17]  Alexander M. Spokoyny,et al.  A Super-Oxidized Radical Cationic Icosahedral Boron Cluster. , 2020, Journal of the American Chemical Society.

[18]  Roberto Peverati,et al.  The devil in the details: A tutorial review on some undervalued aspects of density functional theory calculations , 2020, International Journal of Quantum Chemistry.

[19]  Rian D. Dewhurst,et al.  Boron: Its Role in Energy‐Related Processes and Applications , 2020, Angewandte Chemie.

[20]  R. Friesner,et al.  Accurate Quantum Chemical Calculation of Ionization Potentials: Validation of the DFT-LOC Approach via a Large Data Set Obtained from Experiment and Benchmark Quantum Chemical Calculations. , 2020, Journal of chemical theory and computation.

[21]  Steven H. Liang,et al.  Boron agents for neutron capture therapy , 2020 .

[22]  F. Ali,et al.  Boron Chemistry for Medical Applications , 2020, Molecules.

[23]  Shubin Liu,et al.  Conceptual density functional theory: status, prospects, issues , 2020, Theoretical Chemistry Accounts.

[24]  A. S. Novikov,et al.  QTAIM Analysis of Mono-Hydroxy Derivatives of closo-Borate Anions [BnHn– 1OH]2– (n = 6, 10, 12) , 2019, Russian Journal of Inorganic Chemistry.

[25]  S. Strauss,et al.  Hydrated Metal Ion Salts of the Weakly Coordinating Fluoroanions PF6-, TiF62-, B12F122-, Ga(C2F5)4-, B(3,5-C6H3(CF3)2)4-, and Al(OC(CF3)3)4-. In Search of the Weakest HOH···F Hydrogen Bonds. , 2019, Inorganic chemistry.

[26]  S. Nakashima,et al.  Density Functional Theory (DFT)-Based Bonding Analysis Correlates Ligand Field Strength with 99Ru Mössbauer Parameters of Ruthenium-Nitrosyl Complexes. , 2019, Inorganic chemistry.

[27]  G. Frenking,et al.  Chemical Bonding and Bonding Models of Main-Group Compounds. , 2019, Chemical reviews.

[28]  M. Breza QTAIM study of Al Al bonding in [LiAl2H4]− complex anions , 2019, Polyhedron.

[29]  D. Pantazis Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes , 2019, Inorganics.

[30]  H. Hagemann,et al.  Theoretical Study of Halogenated B12H nX(12- n)2- (X = F, Cl, Br). , 2019, The journal of physical chemistry. A.

[31]  B. Galabov,et al.  Atomic Charges in Describing Properties of Aromatic Molecules. , 2019, The Journal of organic chemistry.

[32]  P. Ayers,et al.  Global and local reactivity descriptors based on quadratic and linear energy models forα,β-unsaturated organic compounds , 2018, International Journal of Quantum Chemistry.

[33]  S. Strauss,et al.  Structure of (SiEt3)2(B12F12). Another example of R3Si F E bridge bonding (E=B, Al, Si) , 2018, Journal of Fluorine Chemistry.

[34]  Longjiu Cheng,et al.  Deciphering chemical bonding in BnHn2− (n = 2–17): flexible multicenter bonding , 2017 .

[35]  L. Domingo,et al.  Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity , 2016, Molecules.

[36]  S. Strauss,et al.  Jahn-Teller Effect in the B12F12 Radical Anion and Energetic Preference of an Octahedral B6(BF2)6 Cluster Structure over an Icosahedral Structure for the Elusive Neutral B12F12. , 2015, Inorganic chemistry.

[37]  H. Hagemann,et al.  Theoretical study of B12HnF(12−n)2− species , 2015 .

[38]  R. O. Jones,et al.  Density functional theory: Its origins, rise to prominence, and future , 2015 .

[39]  N. T. Kuznetsov,et al.  Theoretical QTAIM, ELI-D, and Hirshfeld surface analysis of the Cu-(H)B interaction in [Cu2(bipy)2B10H10]. , 2013, The journal of physical chemistry. A.

[40]  Z. Klemenkova,et al.  The electronic structure of nido-B10H14 and [6-Ph-nido-6-CB9H11]− in terms of Bader’s theory (AIM) , 2013 .

[41]  S. Kiyooka,et al.  Parr’s index to describe both electrophilicity and nucleophilicity , 2013 .

[42]  Clark R. Landis,et al.  Discovering Chemistry With Natural Bond Orbitals , 2012 .

[43]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[44]  L. Domingo,et al.  The nucleophilicity N index in organic chemistry. , 2011, Organic & biomolecular chemistry.

[45]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[46]  F. Neese Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling , 2009 .

[47]  L. Rulíšek,et al.  exo-Substituent effects in halogenated icosahedral (B12H122–) and octahedral (B6H62–) closo-borane skeletons: chemical reactivity studied by experimental and quantum chemical methods , 2009 .

[48]  I. Sivaev,et al.  Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. , 2008, Dalton transactions.

[49]  J. Kennedy,et al.  Vibrational Spectrum and Electronic Structure of the [B11H11]2– Dianion , 2007 .

[50]  R. Friesner Ab initio quantum chemistry: methodology and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Fernando Cortés-Guzmán,et al.  Complementarity of QTAIM and MO theory in the study of bonding in donor–acceptor complexes , 2005 .

[52]  Andreas Savin,et al.  ELF: The Electron Localization Function , 1997 .

[53]  U. Krause,et al.  Darstellung und spektroskopische Charakterisierung der Monofluorohydro‐closo‐Borate [B6H5F]2− und [B12H11F]2− , 1996 .

[54]  G. Subramanian,et al.  Closo-Boranes, -Carboranes, and -Silaboranes: A Topographical Study Using Electron Density and Molecular Electrostatic Potential , 1994 .

[55]  R. Bader,et al.  Properties of atoms in molecules: structures and reactivities of boranes and carboranes , 1992 .

[56]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[57]  W. Lipscomb The boranes and their relatives. , 1977, Science.

[58]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[59]  W. Lipscomb,et al.  Theory of Polyhedral Molecules. I. Physical Factorizations of the Secular Equation , 1962 .

[60]  Alexander S. Novikov,et al.  Theoretical Study of closo-Borate Anions [BnHn]2- (n = 5-12): Bonding, Atomic Charges, and Reactivity Analysis , 2021, Symmetry.

[61]  N. Kuznetsov,et al.  Theoretical study of monocarbonyl derivatives of closo-borate anions [B H–1CO]– (n= 6, 10, 12): bonding and reactivity analysis , 2020 .

[62]  Frank Neese,et al.  The ORCA program system , 2012 .

[63]  U. Sarkar,et al.  Electrophilicity index. , 2006, Chemical reviews.

[64]  Susie M. Miller,et al.  Synthesis, Spectroscopic Characterization, and Structure of closo -1,10-B 10 H 8 F 2 2- and Related Fluorinated Derivatives of B 10 H 10 2- , 1997 .