웹페이지에서 레이블이 없는 텍스트 인식을 위한 확률 모델

도메인 지식은 텍스트의 포맷과 의미 정보를 이용하여 웹에 존재하는 텍스트의 다양한 의미를 이해할 수 있도록 도와준다. 그러나 도메인 지식은 텍스트에 데이터의 의미를 표현하는 레이블이 존재하지 않을 경우에 텍스트 인식을 제대로 수행할 수 없기 때문에 무용지물이 되고 만다. 이러한 문제를 해결하기 위해 본 논문에서는 레이블이 존재하지 않는 텍스트의 의미를 효과적으로 추론할 수 있는 엔티티 인식 모델을 제안한다. 엔티티 인식 모델은 베이지언 모델과 컨텍스트 정보를 결합한 방법으로서, 구조 분석을 수행한 HTML 문서의 텍스트 토큰에 대해서 어떤 엔티티에 속할 것인가를 결정하는 기능을 수행한다. 실험 결과 본 모델을 사용 경우 기존에는 레이블이 없어서 인식되지 않았던 텍스트들을 효과적으로 인식하는 것을 확인할 수 있었다.