Verified computation for the matrix Lambert W function

Abstract Two iterative algorithms are proposed for numerically computing interval matrices containing primary matrix Lambert W functions. The first algorithm is based on a numerical spectral decomposition and involves only cubic complexity per iteration. The second algorithm is based on a numerical Jordan decomposition and applicable even for defective matrices. Numerical results show the effectiveness and robustness of the algorithms.

[1]  Shinya Miyajima Verified computation of the matrix exponential , 2019, Adv. Comput. Math..

[2]  A. Galip Ulsoy,et al.  Analysis of a System of Linear Delay Differential Equations , 2003 .

[3]  S. Rump Verification methods for dense and sparse systems of equations , 1994 .

[4]  S. Rump Computational error bounds for multiple or nearly multiple eigenvalues , 2001 .

[5]  Zhonggang Zeng,et al.  NAClab: a Matlab toolbox for numerical algebraic computation , 2014, ACCA.

[6]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[7]  Willi-Hans Steeb,et al.  Exponential of a matrix, a nonlinear problem, and quantum gates , 2013, 1311.2372.

[8]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[9]  Nicholas J. Higham,et al.  An Algorithm for the Matrix Lambert W Function , 2015, SIAM J. Matrix Anal. Appl..

[10]  A. Galip Ulsoy,et al.  Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter. , 2007, Mathematical biosciences and engineering : MBE.

[11]  Wim Michiels,et al.  Some special cases in the stability analysis of multi-dimensional time-delay systems using the matrix Lambert W function , 2014, Autom..

[12]  Sun Yi,et al.  Controllability and Observability of Systems of Linear Delay Differential Equations via the Matrix Lambert W Function , 2007, 2007 American Control Conference.

[13]  Shinya Miyajima Fast verified computation for the matrix principal pth root , 2018, J. Comput. Appl. Math..

[14]  Shinya Miyajima Fast Enclosure for All Eigenvalues and Invariant Subspaces in Generalized Eigenvalue Problems , 2014, SIAM J. Matrix Anal. Appl..

[15]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[16]  Tobias Damm,et al.  The Lambert W function and the spectrum of some multidimensional time-delay systems , 2007, Autom..

[17]  Hans-Robert Arndt,et al.  On Interval Systems [x] = [A][x] + [b] and the Powers of Interval Matrices in Complex Interval Arithmetics , 2007, Reliab. Comput..