Verified computation for the matrix Lambert W function
暂无分享,去创建一个
[1] Shinya Miyajima. Verified computation of the matrix exponential , 2019, Adv. Comput. Math..
[2] A. Galip Ulsoy,et al. Analysis of a System of Linear Delay Differential Equations , 2003 .
[3] S. Rump. Verification methods for dense and sparse systems of equations , 1994 .
[4] S. Rump. Computational error bounds for multiple or nearly multiple eigenvalues , 2001 .
[5] Zhonggang Zeng,et al. NAClab: a Matlab toolbox for numerical algebraic computation , 2014, ACCA.
[6] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[7] Willi-Hans Steeb,et al. Exponential of a matrix, a nonlinear problem, and quantum gates , 2013, 1311.2372.
[8] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..
[9] Nicholas J. Higham,et al. An Algorithm for the Matrix Lambert W Function , 2015, SIAM J. Matrix Anal. Appl..
[10] A. Galip Ulsoy,et al. Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter. , 2007, Mathematical biosciences and engineering : MBE.
[11] Wim Michiels,et al. Some special cases in the stability analysis of multi-dimensional time-delay systems using the matrix Lambert W function , 2014, Autom..
[12] Sun Yi,et al. Controllability and Observability of Systems of Linear Delay Differential Equations via the Matrix Lambert W Function , 2007, 2007 American Control Conference.
[13] Shinya Miyajima. Fast verified computation for the matrix principal pth root , 2018, J. Comput. Appl. Math..
[14] Shinya Miyajima. Fast Enclosure for All Eigenvalues and Invariant Subspaces in Generalized Eigenvalue Problems , 2014, SIAM J. Matrix Anal. Appl..
[15] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[16] Tobias Damm,et al. The Lambert W function and the spectrum of some multidimensional time-delay systems , 2007, Autom..
[17] Hans-Robert Arndt,et al. On Interval Systems [x] = [A][x] + [b] and the Powers of Interval Matrices in Complex Interval Arithmetics , 2007, Reliab. Comput..