Negative electrodes for Li-ion batteries

Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

[1]  B. Scrosati,et al.  Lithium-ion rechargeable batteries , 1994 .

[2]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[3]  J. Dahn,et al.  Carbons prepared from coals for anodes of lithium-ion cells , 1996 .

[4]  Ki-Young Lee,et al.  Effect of Surface Structure on the Irreversible Capacity of Various Graphitic Carbon Electrodes , 1999 .

[5]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[6]  P. Walker,et al.  Importance of carbon active sites in the gasification of coal chars , 1983 .

[7]  Donald F. Othmer,et al.  Encyclopedia of Chemical Technology. Vol. II. , 1949 .

[8]  H. Fujimoto,et al.  Charge-discharge mechanism of graphitized mesocarbon microbeads , 1995 .

[9]  T. Maeda,et al.  A model of the interactions between disordered carbon and lithium , 1995 .

[10]  Xiangyun Song,et al.  Thermal and electrochemical studies of carbons for Li-ion batteries: 2. Correlation of active sites and irreversible capacity loss , 2000 .

[11]  Dominique Guyomard,et al.  The Li1+xMn2O4/C rocking-chair system: a review , 1993 .

[12]  Jeff Dahn,et al.  Correlation Between Lithium Intercalation Capacity and Microstructure in Hard Carbons , 1996 .

[13]  M. Endo,et al.  A Mechanism of Lithium Storage in Disordered Carbons , 1994, Science.

[14]  N. Hackerman,et al.  Surface of a carbon with sorbed oxygen on pyrolysis , 1968 .

[15]  Madhav Datta,et al.  Energy storage systems for electronics , 2000 .

[16]  Rachid Yazami,et al.  Surface chemistry and lithium storage capability of the graphite-lithium electrode , 1999 .

[17]  J. Mondori,et al.  Interactions between disordered carbon and lithium in lithium ion rechargeable batteries , 1995 .

[18]  Dominique Guyomard,et al.  The carbon/Li1+xMn2O4 system , 1994 .

[19]  H. Fujimoto,et al.  Effect of crystallite size on the chemical compositions of the stage 1 alkali metal-graphite intercalation compounds , 1994 .

[20]  J. Fischer,et al.  Local structure and vibrational spectroscopy of disordered carbons for Li batteries: Neutron scattering studies , 1997 .

[21]  E. Peled,et al.  A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li‐Ion Batteries , 1999 .

[22]  K. Zaghib,et al.  Effect of Graphite Particle Size on Irreversible Capacity Loss , 2000 .

[23]  J. Dahn,et al.  Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins , 1996 .

[24]  H. Fujimoto,et al.  Electrochemical Insertion of Lithium into Carbon Synthesized from Condensed Aromatics , 1996 .

[25]  J. Dahn,et al.  The “falling cards model” for the structure of microporous carbons , 1997 .

[26]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[27]  T. Ohsaki,et al.  Electrochemical intercalation of lithium into graphitized carbons , 1995 .

[28]  H. Fujimoto,et al.  Charge‐Discharge Characteristics of the Mesocarbon Miocrobeads Heat‐Treated at Different Temperatures , 1995 .

[29]  P. Walker,et al.  THE IMPORTANCE OF ACTIVE SURFACE AREA IN THE CARBON-OXYGEN REACTION1,2 , 1963 .

[30]  P. Novák,et al.  Graphites for lithium-ion cells : The correlation of the first-cycle charge loss with the Brunauer-Emmett-Teller surface area , 1998 .

[31]  H. Fujimoto,et al.  New structural parameters for carbon: Comprehensive crystallization index and cavity index , 1994 .

[32]  Marc Doyle,et al.  Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium‐Ion Batteries Using Carbon‐Based Negative Electrodes , 1999 .