Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons

Neuronal processing is classically conceptualized as dendritic input, somatic integration, and axonal output. The axon initial segment, the proposed site of action potential generation, usually emanates directly from the soma. However, we found that axons of hippocampal pyramidal cells frequently derive from a basal dendrite rather than from the soma. This morphology is particularly enriched in central CA1, the principal hippocampal output area. Multiphoton glutamate uncaging revealed that input onto the axon-carrying dendrites (AcDs) was more efficient in eliciting action potential output than input onto regular basal dendrites. First, synaptic input onto AcDs generates action potentials with lower activation thresholds compared with regular dendrites. Second, AcDs are intrinsically more excitable, generating dendritic spikes with higher probability and greater strength. Thus, axon-carrying dendrites constitute a privileged channel for excitatory synaptic input in a subset of cortical pyramidal cells.

[1]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[2]  Vassilis Cutsuridis,et al.  Encoding and retrieval in a model of the hippocampal CA1 microcircuit , 2009, Hippocampus.

[3]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[4]  H. Kuba Structural tuning and plasticity of the axon initial segment in auditory neurons , 2012, The Journal of physiology.

[5]  Alan Peters,et al.  THE SMALL PYRAMIDAL NEURON OF THE RAT CEREBRAL CORTEX , 1968, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[6]  Andreas Draguhn,et al.  Cellular correlate of assembly formation in oscillating hippocampal networks in vitro , 2011, Proceedings of the National Academy of Sciences.

[7]  Nelson Spruston,et al.  Synaptic amplification by dendritic spines enhances input cooperativity , 2012, Nature.

[8]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[9]  I. Soltesz,et al.  Target-selective GABAergic control of entorhinal cortex output , 2010, Nature Neuroscience.

[10]  Bert Sakmann,et al.  Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons , 1995, Neuron.

[11]  Jozsef Csicsvari,et al.  Activity-Dependent Control of Neuronal Output by Local and Global Dendritic Spike Attenuation , 2009, Neuron.

[12]  L. Slomianka,et al.  Hippocampal pyramidal cells: the reemergence of cortical lamination , 2011, Brain Structure and Function.

[13]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[14]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[15]  Christina Müller,et al.  Inhibitory Control of Linear and Supralinear Dendritic Excitation in CA1 Pyramidal Neurons , 2012, Neuron.

[16]  Harunori Ohmori,et al.  Presynaptic activity regulates Na+ channel distribution at the axon initial segment , 2010, Nature.

[17]  M. Frotscher,et al.  The alvear pathway of the rat hippocampus , 1996, Cell and Tissue Research.

[18]  Romain Brette,et al.  Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic Integration , 2011, PLoS Comput. Biol..

[19]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[20]  D. Debanne,et al.  Axon physiology. , 2011, Physiological reviews.

[21]  G. Baranauskas,et al.  Spatial mismatch between the Na+ flux and spike initiation in axon initial segment , 2013, Proceedings of the National Academy of Sciences.

[22]  N. Spruston,et al.  Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus , 2008, The Journal of comparative neurology.

[23]  Lyle J. Graham,et al.  Complementary Theta Resonance Filtering by Two Spatially Segregated Mechanisms in CA1 Hippocampal Pyramidal Neurons , 2009, The Journal of Neuroscience.

[24]  D. Pinkel,et al.  Supporting Online Material Materials and Methods Figs. S1 and S2 Tables S1 and S2 References Combined Analog and Action Potential Coding in Hippocampal Mossy Fibers , 2022 .

[25]  D. Contreras,et al.  Stimulus-Dependent Changes in Spike Threshold Enhance Feature Selectivity in Rat Barrel Cortex Neurons , 2005, The Journal of Neuroscience.

[26]  P. Jonas,et al.  Distal initiation and active propagation of action potentials in interneuron dendrites. , 2000, Science.

[27]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[28]  K. Iremonger,et al.  GnRH Neurons Elaborate a Long-Range Projection with Shared Axonal and Dendritic Functions , 2013, The Journal of Neuroscience.

[29]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[30]  Moritz Helmstaedter,et al.  High-accuracy neurite reconstruction for high-throughput neuroanatomy , 2011, Nature Neuroscience.

[31]  G. Stuart,et al.  Site of Action Potential Initiation in Layer 5 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[32]  Michael L. Hines,et al.  Neuroinformatics Original Research Article Neuron and Python , 2022 .

[33]  G. Buzsáki,et al.  Hippocampal CA1 pyramidal cells form functionally distinct sublayers , 2011, Nature Neuroscience.

[34]  D. Amaral,et al.  Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat , 1990, The Journal of comparative neurology.

[35]  Michel A. Picardo,et al.  Pioneer glutamatergic cells develop into a morpho-functionally distinct population in the juvenile CA3 hippocampus , 2012, Nature Communications.

[36]  T. Yamamoto,et al.  Postnatal ontogenesis of hippocampal CA1 area in rats. I. Development of dendritic arborisation in pyramidal neurons , 1981, Brain Research Bulletin.

[37]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[38]  G. Buzsáki,et al.  Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity , 2001, Neuroscience.

[39]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[40]  Roland Krueppel,et al.  Dendritic Integration in Hippocampal Dentate Granule Cells , 2011, Neuron.

[41]  P. Wahle,et al.  A period of structural plasticity at the axon initial segment in developing visual cortex , 2014, Front. Neuroanat..

[42]  A. Pitkänen,et al.  Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat , 1999, The Journal of comparative neurology.

[43]  Z. Nusser,et al.  Molecular Identity of Dendritic Voltage-Gated Sodium Channels , 2010, Science.

[44]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[45]  M. Grubb,et al.  Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability , 2010, Nature.

[46]  Karl Deisseroth,et al.  Hemisphere-specific optogenetic stimulation reveals left-right asymmetry of hippocampal plasticity , 2011, Nature Neuroscience.

[47]  T. Powell,et al.  A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices. , 1979, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[48]  Hajime Hirase,et al.  Hippocampal CA3 and CA2 have distinct bilateral innervation patterns to CA1 in rodents , 2012, The European journal of neuroscience.

[49]  Alan Peters,et al.  THE SMALL PYRAMIDAL NEURON OF THE RAT CEREBRAL CORTEX The Axon Hillock and Initial Segment , 1968 .

[50]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[51]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[52]  Matthew N. Rasband,et al.  The axon initial segment and the maintenance of neuronal polarity , 2010, Nature Reviews Neuroscience.

[53]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[54]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[55]  N. Spruston,et al.  Hippocampal Pyramidal Neurons Comprise Two Distinct Cell Types that Are Countermodulated by Metabotropic Receptors , 2012, Neuron.

[56]  D. Henze,et al.  Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. , 2000, Journal of neurophysiology.