Local Bases for Model‐reduced Smoke Simulations

We present a flexible model reduction method for simulating incompressible fluids. We derive a novel vector field basis composed of localized basis flows which have simple analytic forms and can be tiled on regular lattices, avoiding the use of complicated data structures or neighborhood queries. Local basis flow interactions can be precomputed and reused to simulate fluid dynamics on any simulation domain without additional overhead. We introduce heuristic simulation dynamics tailored to our basis and derived from a projection of the Navier‐Stokes equations to produce physically plausible motion, exposing intuitive parameters to control energy distribution across scales. Our basis can adapt to curved simulation boundaries, can be coupled with dynamic obstacles, and offers simple adjustable trade‐offs between speed and visual resolution.

[1]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[2]  Marie-Paule Cani,et al.  Modal Locomotion: Animating Virtual Characters with Natural Vibrations , 2009, Comput. Graph. Forum.

[3]  Virgil Snyder,et al.  Coolidge on Algebraic Curves , 1932 .

[4]  Derek Nowrouzezahrai,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) a Controllable, Fast and Stable Basis for Vortex Based Smoke Simulation , 2022 .

[5]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, ACM Trans. Graph..

[6]  Pradeep Sen,et al.  Scalable laplacian eigenfluids , 2018, ACM Trans. Graph..

[7]  Pierre Gilles Lemarié-Rieusset Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nuIIe , 1992 .

[8]  Pierre Gilles Lemarié-Rieusset UN THEOREME D'INEXISTENCE POUR LES ONDELETTES VECTEURS A DIVERGENCE NULLE , 1994 .

[9]  Oleg V. Vasilyev,et al.  An Adaptive Wavelet Collocation Method for Fluid-Structure Interaction at High Reynolds Numbers , 2005, SIAM J. Sci. Comput..

[10]  Alexis Angelidis,et al.  Multi-scale vorticle fluids , 2017, ACM Trans. Graph..

[11]  O. Vasilyev,et al.  Wavelet Methods in Computational Fluid Dynamics , 2010 .

[12]  Z. Popovic,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH 2006.

[13]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[14]  Adrien Treuille,et al.  Non-polynomial Galerkin projection on deforming meshes , 2013, ACM Trans. Graph..

[15]  Pradeep Dubey,et al.  Large-scale fluid simulation using velocity-vorticity domain decomposition , 2012, ACM Trans. Graph..

[16]  Markus H. Gross,et al.  Lagrangian vortex sheets for animating fluids , 2012, ACM Trans. Graph..

[17]  Peter-Pike J. Sloan,et al.  Basis enrichment and solid–fluid coupling for model‐reduced fluid simulation , 2015, Comput. Animat. Virtual Worlds.

[18]  ROB STEVENSON,et al.  Divergence-free wavelet bases on the hypercube: Free-slip boundary conditions, and applications for solving the instationary Stokes equations , 2011, Math. Comput..

[19]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[20]  Alex Pentland,et al.  Good vibrations: modal dynamics for graphics and animation , 1989, SIGGRAPH.

[21]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[22]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, SIGGRAPH 2010.

[23]  Eugene Fiume,et al.  Fluid simulation using Laplacian eigenfunctions , 2012, TOGS.

[24]  Marie Farge,et al.  Transformée en ondelettes pour détecter et analyser les structures cohérentes dans les écoulements turbulents bidimensionnels , 1988 .

[25]  Masha Sosonkina,et al.  Enhanced Parallel Multicolor Preconditioning Techniques for Linear Systems , 1999, PPSC.

[26]  Valérie Perrier,et al.  Divergence-free Wavelets for Navier-Stokes , 2005, ArXiv.

[27]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[28]  Eric Brown-Dymkoski,et al.  Parallel adaptive wavelet collocation method for PDEs , 2011, J. Comput. Phys..

[29]  KavanLadislav,et al.  Basis enrichment and solid-fluid coupling for model-reduced fluid simulation , 2015 .

[30]  Theodore Kim,et al.  Compressing fluid subspaces , 2016, Symposium on Computer Animation.

[31]  M. Farge,et al.  Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis , 1999 .

[32]  Valérie Perrier,et al.  Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows , 2006 .

[33]  Mark Meyer,et al.  Subspace clothing simulation using adaptive bases , 2014, ACM Trans. Graph..

[34]  Souleymane Kadri Harouna,et al.  Divergence-free Wavelet Projection Method for Incompressible Viscous Flow , 2012 .

[35]  G. W. Stewart Afternotes Goes to Graduates School , 1998 .

[36]  G. Stewart Afternotes goes to graduate school : lectures on advanced numerical analysis : a series of lectures on advanced numerical analysis presented at the University of Maryland at College Park and recorded after the fact , 1998 .

[37]  Yvonne Jaeger,et al.  Turbulence: An Introduction for Scientists and Engineers , 2015 .

[38]  J. Coolidge A Treatise on Algebraic Plane Curves , 1959 .

[39]  Ming C. Lin,et al.  Fast animation of turbulence using energy transport and procedural synthesis , 2008, SIGGRAPH Asia '08.

[40]  Yiying Tong,et al.  Model-reduced variational fluid simulation , 2015, ACM Trans. Graph..

[41]  Theodore Kim,et al.  Subspace fluid re-simulation , 2013, ACM Trans. Graph..

[42]  Adrien Treuille,et al.  Modular bases for fluid dynamics , 2009, ACM Trans. Graph..