Transfer matrix approach to the triangular block decoupling problem
暂无分享,去创建一个
[1] K. Furuta,et al. State feedback and inverse system , 1977 .
[2] Trifon G. Koussic-Uris. A frequency domain approach to the block decoupling problem I. The solvability of the block decoupling problem by state feedback and a constant non-singular input transformation , 1979 .
[3] J. Descusse,et al. Triangular decoupling and pole placement in linear multivariable systems: a direct algebraic approach , 1979 .
[4] Eric S. Lander,et al. AN ALGEBRAIC APPROACH , 1983 .
[5] A. Morse,et al. Status of noninteracting control , 1971 .
[6] M. Heymann,et al. Linear feedback decoupling--Transfer function analysis , 1983 .
[7] A. Morse,et al. Triangular decoupling of linear multivariable systems , 1970 .
[8] R. Brockett,et al. The reproducibility of multivariable systems , 1964 .
[9] S. H. Wang. Relationship between triangular decoupling and invertibility of linear multivariate systems , 1972 .
[10] W. Wonham. Linear Multivariable Control: A Geometric Approach , 1974 .
[11] A. S. Morse,et al. Output Controllability and System Synthesis , 1971 .
[12] P. Fuhrmann. Algebraic system theory: an analyst's point of view , 1976 .
[13] M. Heymann,et al. Linear Feedback—An Algebraic Approach , 1978 .
[14] A. Morse. System Invariants under Feedback and Cascade Control , 1976 .