Collect and analysis of agro-biodiversity data in a participative context: A business intelligence framework

[1]  Amaury Lambert,et al.  Mass extinction in poorly known taxa , 2015, Proceedings of the National Academy of Sciences.

[2]  Daniel A. Keim,et al.  Challenges in Visual Data Analysis , 2006, Tenth International Conference on Information Visualisation (IV'06).

[3]  Christian S. Jensen,et al.  A foundation for capturing and querying complex multidimensional data , 2001, Inf. Syst..

[4]  Lucile Sautot,et al.  The hierarchical agglomerative clustering with Gower index: A methodology for automatic design of OLAP cube in ecological data processing context , 2015, Ecol. Informatics.

[5]  Manuel Vilares,et al.  Supporting knowledge discovery for biodiversity , 2015 .

[6]  Miquel Sànchez-Marrè,et al.  Which method to use? An assessment of data mining methods in Environmental Data Science , 2018, Environ. Model. Softw..

[7]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[8]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[9]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[10]  Mark Roantree,et al.  Anomaly detection in agri warehouse construction , 2017, ACSW.

[11]  Bambang Parmanto,et al.  SOVAT: Spatial OLAP Visualization and Analysis Tool , 2005, Proceedings of the 38th Annual Hawaii International Conference on System Sciences.

[12]  Christoph G. Schütz,et al.  Building an active semantic data warehouse for precision dairy farming , 2018, J. Organ. Comput. Electron. Commer..

[13]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[14]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[15]  Guy Camilleri,et al.  A Volunteer Design Methodology of Data Warehouses , 2018, ER.

[16]  Andreas Schmidt,et al.  Data mining and linked open data – New perspectives for data analysis in environmental research , 2015 .

[17]  C. Hallmann,et al.  Declining abundance of beetles, moths and caddisflies in the Netherlands , 2019, Insect Conservation and Diversity.

[18]  Shulin Wang,et al.  Feature selection in machine learning: A new perspective , 2018, Neurocomputing.

[19]  Longbing Cao,et al.  Domain-Driven Data Mining: Challenges and Prospects , 2010, IEEE Transactions on Knowledge and Data Engineering.

[20]  Torben Bach Pedersen,et al.  Enabling Spatial OLAP Over Environmental and Farming Data with QB4SOLAP , 2016, JIST.

[21]  T. Dooren Assessing species richness trends: Declines of bees and bumblebees in the Netherlands since 1945. , 2019 .

[22]  Sandro Bimonte Current Approaches, Challenges, and Perspectives on Spatial OLAP for Agri-Environmental Analysis , 2016, Int. J. Agric. Environ. Inf. Syst..

[23]  Elena Navarro,et al.  The New Era of Business Intelligence Applications: Building from a Collaborative Point of View , 2019, Bus. Inf. Syst. Eng..

[24]  A. Gentile,et al.  Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances , 2020, Science.

[25]  Longbing Cao,et al.  Data Science , 2017, ACM Comput. Surv..

[26]  Steve Kelling,et al.  Data-Intensive Science: A New Paradigm for Biodiversity Studies , 2009 .

[27]  R. Bommarco,et al.  Ecological intensification: harnessing ecosystem services for food security. , 2013, Trends in ecology & evolution.

[28]  Mollie E. Brooks,et al.  Generalized linear mixed models: a practical guide for ecology and evolution. , 2009, Trends in ecology & evolution.

[29]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[30]  Simon Goring,et al.  Situating Ecology as a Big-Data Science: Current Advances, Challenges, and Solutions , 2018, BioScience.