A MODEL FUNCTION METHOD IN TOTAL LEAST SQUARES

In the present paper, we investigate the dual regularized total least squares (dual RTLS) from a computational aspect. More precisely, we propose a strategy for finding two regularization parameters in the resulting equation of dual RTLS. This strategy is based on an extension of the idea of model function originally proposed by Kunisch, Ito and Zou for a realization of the discrepancy principle in the standard one parameter Tikhonov regularization. For dual RTLS we derive a model function of two variables and show its reliability using standard numerical tests.

[1]  Claude Brezinski,et al.  Multi-parameter regularization techniques for ill-conditioned linear systems , 2003, Numerische Mathematik.

[2]  Gene H. Golub,et al.  Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..

[3]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[4]  V. Ivanov,et al.  The approximate solution of operator equations of the first kind , 1966 .

[5]  Olha Ivanyshyn,et al.  Optimal regularization with two interdependent regularization parameters , 2007 .

[6]  H. Engl,et al.  Johann Radon Institute for Computational and Applied Mathematics , 2004 .

[7]  Jun Zou,et al.  An improved model function method for choosing regularization parameters in linear inverse problems , 2002 .

[8]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[9]  G. Golub,et al.  Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers , 2004 .

[10]  M. A. Krasnoselʹskii,et al.  Approximate Solution of Operator Equations , 1972 .

[11]  N. Hengartner,et al.  Adaptive estimation for inverse problems with noisy operators , 2005 .

[12]  F. Bauer,et al.  The quasi-optimality criterion for classical inverse problems , 2008 .

[13]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[14]  K. Kunisch,et al.  Iterative choices of regularization parameters in linear inverse problems , 1998 .

[15]  Shuai Lu,et al.  Regularized Total Least Squares: Computational Aspects and Error Bounds , 2009, SIAM J. Matrix Anal. Appl..

[16]  Sabine Van Huffel,et al.  The total least squares problem , 1993 .

[17]  E. Miller,et al.  Efficient determination of multiple regularization parameters in a generalized L-curve framework , 2002 .

[18]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.