On the Discrete Maximum Principle for the Beltrami Color Flow

Abstract We analyze the discrete maximum principle for the Beltrami color flow. The Beltrami flow can display linear as well as nonlinear behavior according to the values of a parameter β, which represents the ratio between spatial and color distances. In general, the standard schemes fail to satisfy the discrete maximum principle. In this work we show that a nonnegative second order difference scheme can be built for this flow only for small β, i.e. linear-like diffusion. Since this limitation is too severe, we construct a novel finite difference scheme, which is not nonnegative and satisfies the discrete maximum principle for all values of β. Numerical results support the analysis.

[1]  Yehoshua Y. Zeevi,et al.  Representation of colored images by manifolds embedded in higher dimensional non-Euclidean space , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[2]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[3]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[6]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[8]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[11]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[12]  D. Mumford,et al.  Stochastic models for generic images , 2001 .

[13]  Lorina Dascal,et al.  A Maximum Principle for Beltrami Color Flow , 2005, SIAM J. Appl. Math..

[14]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[15]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[16]  Christopher M. Brown Advances in computer vision , 1987 .

[17]  Ron Kimmel,et al.  From High Energy Physics to Low Level Vision , 1997, Scale-Space.

[18]  Luc Florack,et al.  Calculations on Critical Points under Gaussian Blurring , 1999, Scale-Space.

[19]  Lorina Dascal,et al.  The Maximum Principle for Beltrami Color Flow , 2003, Scale-Space.

[20]  Ron Kimmel,et al.  Images as embedding maps and minimal surfaces: movies, color, and volumetric medical images , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[22]  Joachim Weickert,et al.  A semidiscrete nonlinear scale-space theory and its relation to the Perona - Malik paradox , 1996, TFCV.