Propriétés combinatoires des suites définies par le billard dans les triangles pavants
暂无分享,去创建一个
[1] Shin-ichi Yasutomi,et al. On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y] , 1990 .
[2] Pierre Arnoux,et al. Complexity of sequences defined by billiard in the cube , 1994 .
[3] Filippo Mignosi,et al. Some Combinatorial Properties of Sturmian Words , 1994, Theor. Comput. Sci..
[4] Günter Rote,et al. Sequences With Subword Complexity 2n , 1994 .
[5] Filippo Mignosi,et al. On the Number of Factors of Sturmian Words , 1991, Theor. Comput. Sci..
[6] Baryshnikov,et al. Complexity of trajectories in rectangular billiards , 1994, chao-dyn/9406001.
[7] I. Shiokawa,et al. Arithmetical properties of a certain power series , 1992 .
[8] Jean Berstel,et al. A Geometric Proof of the Enumeration Formula for Sturmian Words , 1993, Int. J. Algebra Comput..
[9] C. Boldrighini,et al. Billiards in Polygons , 1978 .
[10] G. Rauzy,et al. Mots infinis en arithmétique , 1984, Automata on Infinite Words.