Randomized Approximations of the Image Set of Nonlinear Mappings with Applications to Filtering

The aim of this paper is twofold: In the first part, we leverage recent results on scenario design to develop randomized algorithmsfor approximating the image set of a nonlinear mapping, that is, a (possibly noisy) mapping of a set via a nonlinear function.We introduce minimum-volume approximations which have the characteristic of guaranteeing a low probability of violation, i.e.,we admit for a probability that some points in the image set are not contained in the approximating set,but this probability is kept below a pre-specified threshold.In the second part of the paper, this idea is then exploited to develop a new family of randomized prediction-corrector filters.These filters represent a natural extension and rapprochement of Gaussian and set-valued filters,and bear similarities with modern tools such as particle filters.

[1]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[2]  T. Alamo,et al.  A set-membership state estimation algorithm based on DC programming , 2008, Autom..

[3]  Jirí Vlach,et al.  Ellipsoidal method for design centering and yield estimation , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..

[5]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[6]  Fabrizio Dabbene,et al.  Set approximation via minimum-volume polynomial sublevel sets , 2013, 2013 European Control Conference (ECC).

[7]  Constantino M. Lagoa,et al.  On the complexity of randomized approximations of nonconvex sets , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[8]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[9]  Giuseppe Carlo Calafiore,et al.  Random Convex Programs , 2010, SIAM J. Optim..

[10]  Jean B. Lasserre,et al.  Level Sets and NonGaussian Integrals of Positively Homogeneous Functions , 2011, IGTR.

[11]  Marco C. Campi,et al.  The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..

[12]  Giuseppe Carlo Calafiore,et al.  Robust filtering for discrete-time systems with bounded noise and parametric uncertainty , 2001, IEEE Trans. Autom. Control..

[13]  Roberto Tempo,et al.  Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms , 2013, Autom..

[14]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[15]  Giuseppe Carlo Calafiore,et al.  Reliable localization using set-valued nonlinear filters , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[16]  Mario Sznaier,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems with Applications, Second Edition, Roberto Tempo, Giuseppe Calafiore, Fabrizio Dabbene (Eds.). Springer-Verlag, London (2013), 357, ISBN: 978-1-4471-4609-4 , 2014, Autom..

[17]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[18]  Simo Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Trans. Autom. Control..

[19]  Marco C. Campi,et al.  The exact feasibility of randomized solutions of robust convex programs , 2008 .