Explicit preconditioned iterative methods for solving large unsymmetric finite element systems

A class of Generalized Approximate Inverse Matrix (GAIM) techniques, based on the concept of LU-sparse factorization procedures, is introduced for computing explicitly approximate inverses of large sparse unsymmetric matrices of irregular structure, without inverting the decomposition factors. Explicit preconditioned iterative methods, in conjunction with modified forms of the GAIM techniques, are presented for solving numerically initial/boundary value problems on multiprocessor systems. Application of the new methods on linear boundary-value problems is discussed and numerical results are given.ZusammenfassungEs wird eine Methode zur Approximation der verallgemeinerten inversen Matrix (GAIM) diskutiert, die auf dem Konzept der schwachbesetzten LU-Faktorisierung basiert und explizite Inverse großer schwachbesetzter unsymmetrischer Matrizen auf irregulären Strukturen approximiert, ohne die Zerlegungsfaktoren zu invertieren. In Verbindung mit Modifikationen der GAIM-Technik werden explizite Präkonditionierungsmethoden zur numerischen Lösung von Anfangsrandwertproblemen auf Multiprozessorsystemen vorgestellt. Anwendungen der neuen Methoden auf lineare Randwertaufgaben werden diskutiert und numerische Resultate präsentiert.

[1]  H. Niessner,et al.  On computing the inverse of a sparse matrix , 1983 .

[2]  D. J. Evans,et al.  Explicit semi-direct methods based on approximate inverse matrix techniques for solving boundary-value problems on parallel processors , 1987 .

[3]  Paul S. Dwyer,et al.  Compact Computation of the Inverse of a Matrix , 1945 .

[4]  Randall Barry Bramley,et al.  Row Projection Methods for Linear Systems , 1989 .

[5]  Elias A. Lipitakis,et al.  A normalized implicit conjugate gradient method for the solution of large sparse systems of linear equations , 1980 .

[6]  Solving elliptic boundary-value problems on parallel processors by approximate inverse matrix semi-direct methods based on the multiple explicit Jacobi iteration , 1984 .

[7]  Elias A. Lipitakis Generalized extended to the limit sparse factorization techniques for solving unsymmetric finite element systems , 2005, Computing.

[8]  O. Axelsson,et al.  On a class of preconditioned iterative methods on parallel computers. , 1989 .

[9]  Olin G. Johnson,et al.  VECTOR ALGORITHMS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS BASED ON THE JACOBI METHOD , 1981 .

[10]  N. Munksgaard,et al.  Solving Sparse Symmetric Sets of Linear Equations by Preconditioned Conjugate Gradients , 1980, TOMS.

[11]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[12]  David J. Evans,et al.  Solving non-linear elliptic difference equations by extendable sparse factorization procedures , 1980, Computing.

[13]  Anne Greenbaum,et al.  Approximating the inverse of a matrix for use in iterative algorithms on vector processors , 1979, Computing.

[14]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .