In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f. sp. cucumerinum

[1]  N. Yu,et al.  Characterization of Bacillus amyloliquefaciens DA12 Showing Potent Antifungal Activity against Mycotoxigenic Fusarium Species , 2017, The plant pathology journal.

[2]  Ki Deok Kim,et al.  Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and Aflatoxin Production on Stored Rice Grains , 2017, Mycobiology.

[3]  T. Anjum,et al.  Identification of a Potential ISR Determinant from Pseudomonas aeruginosa PM12 against Fusarium Wilt in Tomato , 2017, Front. Plant Sci..

[4]  Priyanka,et al.  Crop specific plant growth promoting effects of ACCd enzyme and siderophore producing and cynogenic fluorescent Pseudomonas , 2017, 3 Biotech.

[5]  G. Mugnozza,et al.  An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes , 2017, Front. Microbiol..

[6]  D. Paul,et al.  Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India , 2017 .

[7]  Avinash C. Pandey,et al.  Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle , 2017, Front. Plant Sci..

[8]  W. Raza,et al.  Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. , 2016, Microbiological research.

[9]  Xiaoping Yu,et al.  Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum , 2016, Journal of basic microbiology.

[10]  M. Messuti,et al.  Potential biocontrol actinobacteria: Rhizospheric isolates from the Argentine Pampas lowlands legumes , 2016, Journal of basic microbiology.

[11]  Q. Xiao,et al.  Role of Vfr in the regulation of antifungal compound production by Pseudomonas fluorescens FD6. , 2016, Microbiological research.

[12]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[13]  E. Kothe,et al.  Special issue: Nitrogen and phosphorus cycling , 2016, Journal of basic microbiology.

[14]  Yong Hoon Lee,et al.  Genes involved in nutrient competition by Pseudomonas putida JBC17 to suppress green mold in postharvest satsuma mandarin , 2015, Journal of basic microbiology.

[15]  Joon-Hee Han,et al.  Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea , 2015, The plant pathology journal.

[16]  P. Dorrestein,et al.  Nonribosomal Peptides, Key Biocontrol Components for Pseudomonas fluorescens In5, Isolated from a Greenlandic Suppressive Soil , 2015, mBio.

[17]  Majdah M. Y. Al-Tuwaijri Studies on Fusarium wilt Disease of Cucumber , 2015 .

[18]  Jingwu Zheng,et al.  Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a Biocontrol Agent Against Fusarium graminearum. , 2014, Phytopathology.

[19]  Manoj Kumar Solanki,et al.  Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani , 2014, Journal of basic microbiology.

[20]  M. B. Sulochana,et al.  Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS‐25 , 2014, Journal of basic microbiology.

[21]  Shi-dong Li,et al.  Management of Cucumber Wilt Disease by Bacillus subtilis B006 Through Suppression of Fusarium oxysporum f. sp. cucumerinum in Rhizosphere , 2014 .

[22]  S. Chun,et al.  Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. , 2014, Microbiological research.

[23]  M. Ahemad,et al.  Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective , 2014 .

[24]  B. Yun,et al.  Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against Fungal Plant Diseases , 2013, Mycobiology.

[25]  Promita Deb,et al.  Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001 , 2013, SpringerPlus.

[26]  H. Sahl,et al.  Lahorenoic acids A-C, ortho-dialkyl-substituted aromatic acids from the biocontrol strain Pseudomonas aurantiaca PB-St2. , 2013, Journal of natural products.

[27]  A. Beneduzi,et al.  Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents , 2012, Genetics and molecular biology.

[28]  Pankaj Kumar,et al.  Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. , 2012, Microbiological research.

[29]  J. Guarro,et al.  HapX-Mediated Iron Homeostasis Is Essential for Rhizosphere Competence and Virulence of the Soilborne Pathogen Fusarium oxysporum[C][W][OA] , 2012, Plant Cell.

[30]  Q. Shen,et al.  Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. , 2012, Microbiological research.

[31]  K. Kalani,et al.  Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. , 2012, Journal of microbiology and biotechnology.

[32]  Yong-Tae Jeong,et al.  Isolation and Identification of Antifungal Compounds from Bacillus subtilis C9 Inhibiting the Growth of Plant Pathogenic Fungi , 2012, Mycobiology.

[33]  E. Pazira,et al.  Evaluation of Zinc solubilization potential by different strains of Fluorescent Pseudomonads , 2012 .

[34]  Jong Bhak,et al.  Liverome: a curated database of liver cancer-related gene signatures with self-contained context information , 2011, BMC Genomics.

[35]  Hong-Yu Ou,et al.  Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18 , 2011, BMC Genomics.

[36]  Junbin Huang,et al.  Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1 , 2011 .

[37]  Fanglian He E. coli Genomic DNA Extraction , 2011 .

[38]  G. A. Ahmed Controlling of Fusarium Wilt of Cucumber by Antagonistic Bacteria , 2010 .

[39]  B. Du,et al.  Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere , 2009, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[40]  I. de Bruijn,et al.  Regulation of Cyclic Lipopeptide Biosynthesis in Pseudomonas fluorescens by the ClpP Protease , 2008, Journal of bacteriology.

[41]  Jos M. Raaijmakers,et al.  The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms , 2009, Plant and Soil.

[42]  R. C. Kasana,et al.  A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram’s Iodine , 2008, Current Microbiology.

[43]  P. Trivedi,et al.  In vitro evaluation of antagonistic properties of Pseudomonas corrugata. , 2008, Microbiological research.

[44]  Y. Hashidoko,et al.  Isolation and Identification of Potential Phosphate Solubilizing Bacteria from the Rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh , 2007, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[45]  N. Ayyadurai,et al.  Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad‐spectrum antifungal activity and biofertilizing traits , 2005, Journal of applied microbiology.

[46]  G. Défago,et al.  Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. , 2003, Molecular plant-microbe interactions : MPMI.

[47]  P. Gunasekaran,et al.  Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens , 2002 .

[48]  B. Dave,et al.  Siderophore production by fluorescent pseudomonads colonizing roots of certain crop plants. , 2001, Indian journal of experimental biology.

[49]  I. Chet,et al.  Biological control of soilborne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia , 1993 .

[50]  R. Bostock,et al.  Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane , 1991, Applied and environmental microbiology.

[51]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[52]  H. Benson Microbiological Applications: A Laboratory Manual in General Microbiology , 1985 .

[53]  M. Doudoroff,et al.  The aerobic pseudomonads: a taxonomic study. , 1966, Journal of general microbiology.

[54]  P. Liu UTILIZATION OF CARBOHYDRATES BY PSEUDOMONAS AERUGINOSA , 1952, Journal of bacteriology.

[55]  S. A. Gordon,et al.  COLORIMETRIC ESTIMATION OF INDOLEACETIC ACID. , 1951, Plant physiology.

[56]  S. Koser UTILIZATION OF THE SALTS OF ORGANIC ACIDS BY THE COLON-AEROGENES GROUP , 1923, Journal of bacteriology.