Collaborative multi-sensor tracking in mobile wireless sensor networks

Sensor localisation and tracking is an important research topic in sensor networks. Collaboration of resource-constrained sensor nodes is extremely important to achieving substantial sensing and processing capability in the aggregate and to providing collectively reliable network behaviour in mission-critical applications. We propose a collaborative multi-sensor tracking (CMST) method for sensor networks and demonstrate through posterior Cramer-Rao bound (PCRB) analysis that sensors' mobility and collaboration can be exploited to significantly improve sensor localisation performance. We also propose a novel adaptive particle filtering algorithm AP-RPF and demonstrate its superior performance through simulation results.

[1]  R.L. Moses,et al.  Locating the nodes: cooperative localization in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[2]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[3]  Zhi Ding ICASSP 2005 panel discussion on signal processing research for communications [future funding] , 2005 .

[4]  Xiaodong Wang,et al.  Dynamic sensor collaboration via sequential Monte Carlo , 2004, IEEE Journal on Selected Areas in Communications.

[5]  Kaveh Pahlavan,et al.  Super-resolution TOA estimation with diversity for indoor geolocation , 2004, IEEE Transactions on Wireless Communications.

[6]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[7]  Kaveh Pahlavan,et al.  Wireless Information Networks , 1995 .

[8]  Deborah Estrin,et al.  Guest Editors' Introduction: Overview of Sensor Networks , 2004, Computer.

[9]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[10]  Juha-Pekka Makela,et al.  Indoor geolocation science and technology , 2002, IEEE Commun. Mag..

[11]  Haibin Yu,et al.  Target tracking based on a distributed particle filter in underwater sensor networks , 2008 .

[12]  Leonidas J. Guibas,et al.  Collaborative signal and information processing: an information-directed approach , 2003 .

[13]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[14]  Jan M. Rabaey,et al.  PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking , 2000, Computer.

[15]  Xinrong Li,et al.  RSS-Based Location Estimation with Unknown Pathloss Model , 2006, IEEE Transactions on Wireless Communications.

[16]  C. Hue,et al.  Posterior Cramer-Rao bounds for multi-target tracking , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Xiuzhen Cheng,et al.  TPS: a time-based positioning scheme for outdoor wireless sensor networks , 2004, IEEE INFOCOM 2004.

[18]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[19]  Lihua Xie,et al.  Target tracking in wireless sensor networks using compressed Kalman filter , 2009, Int. J. Sens. Networks.

[20]  Alfred O. Hero,et al.  Relative location estimation in wireless sensor networks , 2003, IEEE Trans. Signal Process..

[21]  Yu Hen Hu,et al.  Detection, classification, and tracking of targets , 2002, IEEE Signal Process. Mag..

[22]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[23]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[24]  Christian Musso,et al.  Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[25]  M. Zakai,et al.  Some Classes of Global Cramer-Rao Bounds , 1987 .

[26]  M. Gudmundson Correlation Model for Shadow Fading in Mobile Radio Systems , 1991 .

[27]  Deborah Estrin,et al.  Collaborative Sensor Networking Towards Real-Time Acoustical Beamforming in Free-Space and Limited Reverberance , 2004, IEEE Trans. Mob. Comput..

[28]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.