Reaction field factors for a multipole distribution in a cavity surrounded by a continuum

Abstract The reaction field factors appear in the generalization of the Kirkwood model of solvation for a molecule imbedded in a cavity surrounded by a dielectric continuum. A general algorithm is proposed to compute these factors for a distributed multipole analysis of the charge distribution of the solute.

[1]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[2]  Estanislao Silla,et al.  GEPOL: An improved description of molecular surfaces. I. Building the spherical surface set , 1990 .

[3]  Jean-Louis Rivail,et al.  Énergie libre d’une distribution de charges électriques séparée d’un milieu diélectrique infini par une cavité ellipsoïdale quelconque, application à l’étude de la solvation des molécules , 1982 .

[4]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[5]  P. Claverie,et al.  Calculation of the interaction energy of one molecule with its whole surrounding. I. Method and application to pure nonpolar compounds , 1972 .

[6]  Jean-Louis Rivail,et al.  A quantum chemical approach to dielectric solvent effects in molecular liquids , 1976 .

[7]  Manuel F. Ruiz-López,et al.  Theoretical calculation of vibrational polarizabilities. An application to the study of conformational and solvent effects , 1986 .

[8]  David L. Beveridge,et al.  Free energy of a charge distribution in a spheroidal cavity in a polarizable dielectric continuum , 1976 .

[9]  D. Rinaldi,et al.  Fast geometry optimizationin self‐cosistent reaction field computations on solvated molecules , 1992 .

[10]  O Nilsson,et al.  Molecular volumes and surfaces of biomacromolecules via GEPOL: a fast and efficient algorithm. , 1990, Journal of molecular graphics.

[11]  J. Kirkwood,et al.  Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions , 1934 .

[12]  C. G. Gray,et al.  Spherical tensor approach to multipole expansions. I. Electrostatic interactions , 1976 .

[13]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[14]  Iñaki Tuñón,et al.  GEPOL: An improved description of molecular surfaces II. Computing the molecular area and volume , 1991 .

[15]  Daniel Rinaldi,et al.  Lamé's functions and ellipsoidal harmonics for use in chemical physics , 1982, Comput. Chem..

[16]  D. Rinaldi,et al.  Liquid state quantum chemistry : A cavity model , 1985 .

[17]  Imre G. Csizmadia,et al.  Theoretical and Computational Models for Organic Chemistry , 1991 .