Numerical modelling of porphyroclast and porphyroblast rotation in anisotropic rocks

Abstract The rotational behaviour of rigid objects in a weaker rock matrix during deformation has been the subject of many field, experimental and numerical modelling studies, often centred on the question whether objects rotate or not in non-coaxial deformation. With numerical studies gaining increasing popularity and importance we here provide an overview of the results published so far and provide new simulations. Originally, shape and orientation were investigated, while the emphasis shifted to rheology and slip between object and matrix in the nineties of the last century. Due to improved numerical techniques, anisotropic rheology has become the focus of most recent studies, indicating that it is a primary factor in the rotation behaviour of objects. We present new simulations investigating the role of anisotropy on different scales relative to the object, and show how this influences the rotation rate, as well as the inclusion patterns in case of syntectonically growing porphyroblasts. These simulations show that a variety of factors play a role to determine the rate and sense of rotation of objects. The variability of the inclusion patterns that can develop necessitates extreme caution in the kinematic interpretation of these structures when observed in the field.

[1]  M. J. Rubenach,et al.  Sequential porphyroblast growth and crenulation cleavage development during progressive deformation , 1983 .

[2]  B. Hobbs,et al.  Porphyroblast rotation versus nonrotation: Conflict resolution! COMMENT , 2009 .

[3]  P. Launeau,et al.  Effect of mechanical interactions on the development of shape preferred orientations: a two-dimensional experimental approach , 1992 .

[4]  C. J. Wilson,et al.  A tale of two viscosities , 2009 .

[5]  J. D. Eshelby,et al.  The elastic field outside an ellipsoidal inclusion , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  W. Carlson,et al.  Microstructural, chemical and textural records during growth of snowball garnet , 2009 .

[7]  A. Stallard,et al.  Numerical simulations of spiral‐shaped inclusion trails: can 3D geometry distinguish between end‐member models of spiral formation? , 2002 .

[8]  Cees W. Passchier,et al.  Porphyroblast rotation: eppur si muove*? , 1992 .

[9]  Alison Ord,et al.  The thermodynamics of deformed metamorphic rocks: A review , 2011 .

[10]  S. E. Johnson Porphyroblast microstructures: A review of current and future trends , 1999 .

[11]  G. Dresen,et al.  STRESS GRADIENTS AROUND PORPHYROCLASTS : PALAEOPIEZOMETRIC ESTIMATES AND NUMERICAL MODELLING , 1998 .

[12]  M. Jessell,et al.  A new type of numerical experiment on the spatial and temporal patterns of localization of deformation in a material with a coupling of grain size and rheology , 2005 .

[13]  B. Bilby,et al.  The finite deformation of an inhomogeneity in two-dimensional slow viscous incompressible flow , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  P. Koons,et al.  The effects of porphyroblast growth on the effective viscosity of metapelitic rocks: implications for the strength of the middle crust , 2006 .

[15]  T. Y. Wu,et al.  Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows , 1975, Journal of Fluid Mechanics.

[16]  John L. Rosenfeld,et al.  Rotated garnets in metamorphic rocks , 1970 .

[17]  Paul D. Bons,et al.  Elle: the numerical simulation of metamorphic and deformation microstructures , 2001 .

[18]  I. Sanislav Porphyroblast rotation and strain localization: Debate settled!: COMMENT , 2010 .

[19]  A. Duncan,et al.  Deformation partitioning, shear zone development and the role of undeformable objects , 1989 .

[20]  Luca Salasnich,et al.  Finite-element modelling of simple shear flow in Newtonian and non-Newtonian fluids around a circular rigid particle , 2000 .

[21]  R. Lebensohn N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform , 2001 .

[22]  B. Davis,et al.  Porphyroblast inclusion-trail orientation data : Eppure non son girate! , 1992 .

[23]  E. Gomez‐Rivas,et al.  Single layer folding in simple shear , 2013 .

[24]  D. Schmid Rigid polygons in shear , 2005, Geological Society, London, Special Publications.

[25]  C. Passchier,et al.  Shear-sense indicators: A review , 1991 .

[26]  M. Jessell,et al.  Modeling of anisotropic grain growth in minerals , 2001 .

[27]  Karel Segeth,et al.  Three-dimensional hydrodynamical modelling of viscous flow around a rotating ellipsoidial inclusion , 1999 .

[28]  B. Hobbs,et al.  Porphyroblast rotation versus nonrotation: conflict resolution , 2008 .

[29]  M. Jessell,et al.  Strain localization and porphyroclast rotation , 2011 .

[30]  M. Bruce,et al.  The internal inclusion trail geometries preserved within a first phase of porphyroblast growth , 2006 .

[31]  T. Masuda,et al.  Deflection of pure shear viscous flow around a rigid spherical body , 1995 .

[32]  C. D. Piane,et al.  Modelling of porphyroclasts in simple shear and the role of stress variations at grain boundaries , 2009 .

[33]  Chr. Schoneveld,et al.  A study of some typical inclusion patterns in strongly paracrystalline-rotated garnets , 1977 .

[34]  S. Misra,et al.  Rotation of single rigid inclusions embedded in an anisotropic matrix: a theoretical study , 2005 .

[35]  Paul D. Bons,et al.  The influence of strain localisation on the rotation behaviour of rigid objects in experimental shear zones , 2002 .

[36]  R. Taborda,et al.  2D rotation of rigid inclusions in confined bulk simple shear flow: a numerical study , 2005 .

[37]  S. Treagus,et al.  Pure shear deformation of square objects, and applications to geological strain analysis , 2000 .

[38]  N. C. Toimil,et al.  Influence of viscosity contrast and anisotropy on strain accommodation in competent layers , 2007 .

[39]  Paul D. Bons,et al.  A new front-tracking method to model anisotropic grain and phase boundary motion in rocks , 2008, Comput. Geosci..

[40]  Neil S. Mancktelow,et al.  Deformation of an elliptical inclusion in two-dimensional incompressible power-law viscous flow , 2011 .

[41]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[42]  C. Chakraborty,et al.  Development of structures under the influence of heterogeneous flow field around rigid inclusions: insights from theoretical and numerical models , 2002 .

[43]  F. Marques,et al.  Rotation of rigid elliptical cylinders in viscous simple shear flow: analogue experiments , 2001 .

[44]  N. Hayward Determination of early fold axis orientations in multiply deformed rocks using porphyroblast inclusion trails , 1990 .

[45]  Richard J. Lisle,et al.  Applications of continuum mechanics in structural geology (Techniques of modern structural geology. Vol.3) , 2000 .

[46]  Paul F. Williams,et al.  An Outline of Structural Geology , 1976 .

[47]  M. Bjornerud Mathematical model for folding of layering near rigid objects in shear deformation , 1989 .

[48]  P. Williams,et al.  Reference frame, angular momentum, and porphyroblast rotation , 2004 .

[49]  R. Taborda,et al.  2-D rotation behavior of a rigid ellipse in confined viscous simple shear: numerical experiments using FEM , 2004 .

[50]  Maurice A. Biot,et al.  Mechanics of Incremental Deformations: Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids , 1965 .

[51]  R. Vernon Porphyroblast-matrix microstructural relationships in deformed metamorphic rocks , 1978 .

[52]  T. Masuda,et al.  Shape preferred orientation of rigid particles in a viscous matrix: reevaluation to determine kinematic parameters of ductile deformation , 1995 .

[53]  D. Mainprice,et al.  The Role of Pre-existing Mechanical Anisotropy on Shear Zone Development within Oceanic Mantle Lithosphere: an Example from the Oman Ophiolite , 2004 .

[54]  C. Passchier,et al.  δ objects as a gauge for stress sensitivity of strain rate in mylonites , 1993 .

[55]  C. Passchier Stable positions of rigid objects in non-coaxial flow: a study in vorticity analysis , 1987 .

[56]  Cees W. Passchier,et al.  Porphyroclast systems as kinematic indicators , 1985 .

[57]  M. Bjornerud Toward a unified conceptual framework for shear-sense indicators , 1989 .

[58]  S. Johnson,et al.  Stepping stones and pitfalls in the determination of an anticlockwise P-T-t-deformation path: the low-P, high-T Cooma Complex, Australia , 1995 .

[59]  C. Chakraborty,et al.  Simulation of inclusion trail patterns within rotating synkinematic porphyroblasts , 2002 .

[60]  E. Gomez‐Rivas,et al.  Shear fractures in anisotropic ductile materials: An experimental approach , 2012 .

[61]  B. Ildefonse,et al.  Deformation around rigid particles: The influence of slip at the particle/matrix interface , 1993 .

[62]  E. Tryggvason,et al.  Preferred orientations of rigid particles in a viscous matrix deformed by pure shear and simple shear , 1974 .

[63]  H. J. Zwart,et al.  The chronological succession of folding and metamorphism in the central pyrenees , 1960 .

[64]  P. Koons,et al.  Kinematic vorticity analysis and evolving strength of mylonitic shear zones: New data and numerical results , 2009 .

[65]  W. Carlson Porphyroblast crystallization: linking processes, kinetics, and microstructures , 2011 .

[66]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[67]  A. Rollett,et al.  Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper , 2008 .

[68]  John G. Ramsay,et al.  The techniques of modern structural geology , 1987 .

[69]  Kazuhiko Ishii Partitioning of non-coaxiality in deforming layered rock masses , 1992 .

[70]  C. Chakraborty,et al.  Numerical modeling of heterogeneous flow fields around rigid objects with special reference to particle paths, strain shadows and foliation drag , 2001 .

[71]  E. Beam Modeling growth and rotation of porphyroblasts and inclusion trails , 1996 .

[72]  K. Stüwe,et al.  The rotation rate of cylindrical objects during simple shear , 2001 .

[73]  M. Sánchez-Gómez,et al.  Origin of deformation bands in argillaceous sediments at the toe of the Nankai accretionary prism, southwest Japan , 2004 .

[74]  D. Aerden Comment on “Reference frame, angular momentum, and porphyroblast rotation” by Dazhi Jiang and Paul F. Williams , 2005 .

[75]  P. Bons,et al.  The development of δ-clasts in non-linear viscous materials: a numerical approach , 1997 .

[76]  T. Masuda,et al.  Development of snowball structure: numerical simulation of inclusion trails during synkinematic porphyroblast growth in metamorphic rocks , 1989 .

[77]  Simple shear of deformable square objects , 2003 .

[78]  Numerical modelling of the effect of matrix anisotropy orientation on single layer fold development , 2008 .

[79]  N. Muskhelishvili Some basic problems of the mathematical theory of elasticity , 1953 .

[80]  N. H. Gray,et al.  The three-dimensional geometry of simulated porphyroblast inclusion trails: inert-marker, viscous-flow models , 1994 .

[81]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[82]  A. Barker Interpretation of porphyroblast inclusion trails: limitations imposed by growth kinetics and strain rates , 1994 .

[83]  S. Treagus,et al.  Deformation of square objects and boudins , 2004 .

[84]  D. Prior,et al.  Development of garnet porphyroblasts by multiple nucleation, coalescence and boundary misorientation-driven rotations , 2001 .

[85]  Fold mechanisms in the Canton Schist: constraints on the contribution of flexural flow , 2001 .

[86]  G. D. Toro,et al.  Strain-insensitive preferred orientation of porphyroclasts in Mont Mary mylonites , 2001 .

[87]  C. Passchier,et al.  Evolution of mica fish in mylonitic rocks , 2003 .

[88]  M. Jessell,et al.  The preservation potential of microstructures during static grain growth , 2003 .

[89]  P. Cobbold Book Review: The techniques of modern structural geology. Volume 2: Folds and fractures. Ramsay, J. G. and Huber, M. I. 1987. Academic Press, London. 381 pp. Price: £17.50, $34.50 , 1988 .

[90]  R. Taborda,et al.  Influence of a low-viscosity layer between rigid inclusion and viscous matrix on inclusion rotation and matrix flow: A numerical study , 2005 .

[91]  Scott E. Johnson,et al.  Testing models for the development of spiral-shaped inclusion trails in garnet porphyroblasts: to rotate or not to rotate, that is the question , 1993 .

[92]  D. Jiang Reading history of folding from porphyroblasts , 2001 .

[93]  Richard A. Ketcham,et al.  An X-ray computed tomography study of inclusion trail orientations in multiple porphyroblasts from a single sample , 2010 .

[94]  S. Ghosh,et al.  Reorientation of inclusions by combination of pure shear and simple shear , 1976 .

[95]  D. Jiang Vorticity determination, distribution, partitioning and the heterogeneity and non-steadiness of natural deformations , 1994 .

[96]  M. Jessell,et al.  Numerical simulations of microstructures using the Elle platform: A modern research and teaching tool , 2010 .

[97]  Yuri Y. Podladchikov,et al.  Mantled porphyroclast gauges , 2005 .

[98]  M. Jessell,et al.  Dominance of microstructural processes and their effect on microstructural development: insights from numerical modelling of dynamic recrystallization , 2002, Geological Society, London, Special Publications.

[99]  K. Stüwe,et al.  Pressure anomalies around cylindrical objects in simple shear , 2001 .

[100]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[101]  C. Chakraborty,et al.  Flow patterns around rigid inclusions in a multiple inclusion system undergoing bulk simple shear deformation , 2003 .

[102]  T. Bell Deformation partitioning and porphyroblast rotation in meta‐morphic rocks: a radical reinterpretation , 1985 .

[103]  Stefano Ceriani,et al.  Analogue modelling of the influence of shape and particle/matrix interface lubrication on the rotational behaviour of rigid particles in simple shear , 2003 .

[104]  A. Griera,et al.  Rheological and kinematical responses to flow of two-phase rocks , 2006 .

[105]  F. Gaidies,et al.  Toward a quantitative model of metamorphic nucleation and growth , 2011 .

[106]  R. C. Fletcher,et al.  Deformable, rigid, and inviscid elliptical inclusions in a homogeneous incompressible anisotropic viscous fluid , 2009 .

[107]  Modelling of mantled porphyroclasts using non-Newtonian rock analogue materials , 1995 .

[108]  Yuri Y. Podladchikov,et al.  Are isolated stable rigid clasts in shear zones equivalent to voids , 2003 .

[109]  H. Zwart On the determination of polymetamorphic mineral associations, and its application to the Bosost Area (Central Pyrenees) , 1962 .

[110]  T. Masuda,et al.  Deflection of non-Newtonian simple shear flow around a rigid cylindrical body by the finite element method , 1996 .

[111]  S. E. Johnson Porphyroblast rotation and strain localization: Debate settled! , 2009 .

[112]  R. Weinberg A Practical Guide to Rock Microstructures.Ron H. Vernon. Cambridge University Press, 606 Pp. ISBN 10-0521891337. 2004. Price US$75. , 2006 .

[113]  Kevin G. Stewart,et al.  Book reviewThe techniques of modern structural geology. vol. 1. strain analysis: J.G. Ramsay and M.I. Huber. Academic Press, London, 1983, xiii + 307 pp., US $55.00/£28.00 (hardcover) , 1986 .

[114]  R. Taborda,et al.  Effects of confinement on matrix flow around a rigid inclusion in viscous simple shear: insights from analogue and numerical modelling , 2005 .

[115]  M. Dąbrowski,et al.  A rigid circular inclusion in an anisotropic host subject to simple shear , 2011 .

[116]  D. Jiang,et al.  A critique of vorticity analysis using rigid clasts , 2011 .

[117]  Computer modelling of mantled porphyroclasts in Newtonian and non-Newtonian simple shear viscous flows , 1996 .

[118]  C. Passchier Mixing in flow perturbations: a model for development of mantled porphyroclasts in mylonites , 1994 .

[119]  C. Chakraborty,et al.  Numerical models of flow patterns around a rigid inclusion in a viscous matrix undergoing simple shear: implications of model parameters and boundary conditions , 2005 .

[120]  Colin C. Ferguson,et al.  Rotations of elongate rigid particles in slow non-Newtonian flows , 1979 .

[121]  E. Gomez‐Rivas,et al.  Strain rate influence on fracture development in experimental ductile multilayers , 2011 .

[122]  John G. Ramsay,et al.  The techniques of modern structural geology. Volume 1, Strainanalysis , 1983 .

[123]  Dazhi Jiang,et al.  Numerical modeling of the motion of deformable ellipsoidal objects in slow viscous flows , 2007 .

[124]  Neil S. Mancktelow,et al.  Experimental observations on the effect of interface slip on rotation and stabilisation of rigid particles in simple shear and a comparison with natural mylonites , 2002 .

[125]  A. Vauchez,et al.  Structural reactivation in plate tectonics controlled by olivine crystal anisotropy , 2009 .

[126]  R. Lebensohn,et al.  Full-Field vs. Homogenization Methods to Predict Microstructure-Property Relations for Polycrystalline Materials , 2011 .

[127]  F. Martinez,et al.  Evolution of bulk composition, mineralogy, strain style and fluid flow during an HT–LP metamorphic event: sillimanite zone of the Catalan Coastal Ranges Variscan basement, NE Iberia , 2002 .

[128]  C. Chakraborty,et al.  Progressive development of mantle structures around elongate porphyroclasts: insights from numerical models , 2000 .

[129]  J. D. Eshelby,et al.  The change of shape of a viscous ellipsoidal region embedded in a slowly deforming matrix having a different viscosity , 1975 .

[130]  A. Forde,et al.  Do smoothly curving, spiral-shaped inclusion trails signify porphyroblast rotation? , 1992 .

[131]  M. Wilson On syntectonic porphyroblast growth , 1971 .

[132]  K. Mulchrone An analytical solution in 2D for the motion of rigid elliptical particles with a slipping interface under a general deformation , 2007 .

[133]  T. Masuda,et al.  Viscous flow around a rigid spherical body: a hydrodynamical approach , 1988 .

[134]  Hubao Zhang,et al.  Rotation of porphyroblasts in non‐coaxial deformation: insights from computer simulations , 1994 .