Quadratically Constrained Quadratic Programs on Acyclic Graphs With Application to Power Flow

This paper proves that nonconvex quadratically constrained quadratic programs can be solved in polynomial time when their underlying graph is acyclic, provided the constraints satisfy a certain technical condition. We demonstrate this theory on optimal power-flow problems over tree networks.

[1]  K. Pandya,et al.  A SURVEY OF OPTIMAL POWER FLOW , 2008 .

[2]  Yves Colin de Verdière,et al.  Multiplicities of Eigenvalues and Tree-Width of Graphs , 1998, J. Comb. Theory B.

[3]  J. Tropp,et al.  Two proposals for robust PCA using semidefinite programming , 2010, 1012.1086.

[4]  Ufuk Topcu,et al.  Exact Convex Relaxation of Optimal Power Flow in Radial Networks , 2013, IEEE Transactions on Automatic Control.

[5]  I. Hiskens,et al.  Convexity of the set of feasible injections and revenue adequacy in FTR markets , 2005, IEEE Transactions on Power Systems.

[6]  Joshua A. Taylor,et al.  Conic optimization of electric power systems , 2011 .

[7]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[8]  Shuzhong Zhang,et al.  Quadratic maximization and semidefinite relaxation , 2000, Math. Program..

[9]  Zhi-Quan Luo,et al.  Semidefinite Relaxation of Quadratic Optimization Problems , 2010, IEEE Signal Processing Magazine.

[10]  Javad Lavaei,et al.  Geometry of Power Flows and Optimization in Distribution Networks , 2012, IEEE Transactions on Power Systems.

[11]  M. E. Baran,et al.  Optimal capacitor placement on radial distribution systems , 1989 .

[12]  Francisco D. Galiana,et al.  A survey of the optimal power flow literature , 1991 .

[13]  I. Hiskens,et al.  Exploring the Power Flow Solution Space Boundary , 2001, IEEE Power Engineering Review.

[14]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[15]  Yinyu Ye,et al.  Semidefinite programming based algorithms for sensor network localization , 2006, TOSN.

[16]  G. L. Torres,et al.  An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates , 1998 .

[17]  Steven H. Low,et al.  Convex Relaxation of Optimal Power Flow—Part II: Exactness , 2014, IEEE Transactions on Control of Network Systems.

[18]  Daniel K. Molzahn,et al.  Examining the limits of the application of semidefinite programming to power flow problems , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[19]  Stephen P. Boyd,et al.  Semidefinite Programming Relaxations of Non-Convex Problems in Control and Combinatorial Optimization , 1997 .

[20]  Na Li,et al.  Exact convex relaxation of OPF for radial networks using branch flow model , 2012, 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm).

[21]  R. Adapa,et al.  A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods , 1999 .

[22]  R. Jabr A Primal-Dual Interior-Point Method to Solve the Optimal Power Flow Dispatching Problem , 2003 .

[23]  K. Mani Chandy,et al.  Equivalence of branch flow and bus injection models , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[24]  S. Low,et al.  Branch flow model for radial networks: convex relaxation , 2012 .

[25]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[26]  Adam N. Letchford,et al.  A New Approach to the Stable Set Problem Based on Ellipsoids , 2011, IPCO.

[27]  Alan M. Frieze,et al.  Improved approximation algorithms for MAXk-CUT and MAX BISECTION , 1995, Algorithmica.

[28]  M. E. Baran,et al.  Optimal sizing of capacitors placed on a radial distribution system , 1989 .

[29]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[30]  Anthony Man-Cho So,et al.  A Unified Theorem on Sdp Rank Reduction , 2008, Math. Oper. Res..

[31]  Hein van der Holst,et al.  Graphs whose positive semi-definite matrices have nullity at most two , 2003 .

[32]  Xiaoqing Bai,et al.  Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints , 2009 .

[33]  Charles R. Johnson,et al.  On the relative position of multiple eigenvalues in the spectrum of an Hermitian matrix with a given graph , 2003 .

[34]  Babak Hassibi,et al.  Equivalent Relaxations of Optimal Power Flow , 2014, IEEE Transactions on Automatic Control.

[35]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[36]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[37]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[38]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[39]  K. Clements,et al.  An efficient interior point method for sequential quadratic programming based optimal power flow , 2000 .

[40]  K. Mani Chandy,et al.  Inverter VAR control for distribution systems with renewables , 2011, 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[41]  Ufuk Topcu,et al.  Optimal power flow with large-scale storage integration , 2013, IEEE Transactions on Power Systems.

[42]  Daniel Pérez Palomar,et al.  Rank-Constrained Separable Semidefinite Programming With Applications to Optimal Beamforming , 2010, IEEE Transactions on Signal Processing.

[43]  Alexander Shapiro,et al.  Optimization Problems with Perturbations: A Guided Tour , 1998, SIAM Rev..

[44]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[45]  Masakazu Kojima,et al.  Exact Solutions of Some Nonconvex Quadratic Optimization Problems via SDP and SOCP Relaxations , 2003, Comput. Optim. Appl..

[46]  Michael Chertkov,et al.  Options for Control of Reactive Power by Distributed Photovoltaic Generators , 2010, Proceedings of the IEEE.

[47]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[48]  David Tse,et al.  Geometry of feasible injection region of power networks , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[49]  Javad Lavaei,et al.  Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure , 2014, SIAM J. Optim..

[50]  K. Mani Chandy,et al.  Optimal power flow over tree networks , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[51]  K. Fujisawa,et al.  Semidefinite programming for optimal power flow problems , 2008 .

[52]  Steven H. Low,et al.  Branch Flow Model: Relaxations and Convexification—Part I , 2012, IEEE Transactions on Power Systems.

[53]  Yinyu Ye,et al.  Approximating quadratic programming with bound and quadratic constraints , 1999, Math. Program..

[54]  Steven H. Low,et al.  Branch flow model: Relaxations and convexification , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[55]  D. Hill,et al.  On Convexity of Power Flow Feasibility Boundary , 2008, IEEE Transactions on Power Systems.

[56]  Hen-Geul Yeh,et al.  Adaptive VAR Control for Distribution Circuits With Photovoltaic Generators , 2012, IEEE Transactions on Power Systems.

[57]  Javad Lavaei Zero duality gap for classical opf problem convexifies fundamental nonlinear power problems , 2011, Proceedings of the 2011 American Control Conference.

[58]  Y. Nesterov Quality of semidefinite relaxation for nonconvex quadratic optimization , 1997 .

[59]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[60]  J. Lavaei,et al.  Network Topologies Guaranteeing Zero Duality Gap for Optimal Power Flow Problem , 2013 .

[61]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[62]  Nikos D. Sidiropoulos,et al.  Convex Optimization-Based Beamforming , 2010, IEEE Signal Processing Magazine.

[63]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[64]  R. Jabr Radial distribution load flow using conic programming , 2006, IEEE Transactions on Power Systems.

[65]  Y. Ye,et al.  Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics , 1998 .

[66]  Kevin P. Schneider,et al.  Modern Grid Initiative Distribution Taxonomy Final Report , 2008 .

[67]  Steven H. Low,et al.  Branch Flow Model: Relaxations and Convexification—Part II , 2012 .

[68]  Michael J. Todd,et al.  Sensitivity analysis in linear programming and semidefinite programming using interior-point methods , 2001, Math. Program..

[69]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[70]  J. Lavaei,et al.  Physics of power networks makes hard optimization problems easy to solve , 2012, 2012 IEEE Power and Energy Society General Meeting.

[71]  G. Dantzig,et al.  Notes on Linear Programming: Part 1. The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints , 1954 .

[72]  Nikos D. Sidiropoulos,et al.  Transmit beamforming for physical-layer multicasting , 2006, IEEE Transactions on Signal Processing.

[73]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[74]  R. Adapa,et al.  A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches , 1999 .

[75]  J. Momoh Electric Power System Applications of Optimization , 2000 .

[76]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[77]  S. Low,et al.  Zero Duality Gap in Optimal Power Flow Problem , 2012, IEEE Transactions on Power Systems.