Fast Sign Detection for RNS $(2^{n}-1,2^{n},2^{n}+1)$

In this paper, we propose a fast algorithm for sign-extraction of a number given in the Residue Number System (2n-1,2n,2n+1) . The algorithm can be implemented using three n-bit wide additions, two of which can be done in parallel. It can be used in a wide variety of problems, i.e., in algorithms for dividing numbers in the RNS, or in evaluating the sign of determinant in computational geometry, etc.

[1]  Yuke Wang Residue-to-binary converters based on new Chinese remainder theorems , 2000 .

[2]  Zenon D. Ulman,et al.  Sign Detection and Implicit-Explicit Conversion of Numbers in Residue Arithmetic , 1983, IEEE Transactions on Computers.

[3]  Salam N. Saloum,et al.  An efficient residue to binary converter design , 1988 .

[4]  Hong Shen,et al.  Adder based residue to binary number converters for (2n-1, 2n, 2n+1) , 2002, IEEE Trans. Signal Process..

[5]  Victor Y. Pan,et al.  Computing exact geometric predicates using modular arithmetic with single precision , 1997, SCG '97.

[6]  Massimo Alioto,et al.  Analysis and comparison on full adder block in submicron technology , 2002, IEEE Trans. Very Large Scale Integr. Syst..

[7]  Reto Zimmermann,et al.  Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).

[8]  L. Sousa,et al.  {\text{\{ 2}}^{\text{n}} + 1,2^{n + k} ,2^n - 1\}: A New RNS Moduli Set Extension , 2004 .

[9]  Thu V. Vu Efficient Implementations of the Chinese Remainder Theorem for Sign Detection and Residue Decoding , 1985, IEEE Trans. Computers.

[10]  S. Andraos,et al.  A new efficient memoryless residue to binary converter , 1988 .

[11]  A. Baraniecka,et al.  On decoding techniques for residue number system realizations of digital signal processing hardware , 1978 .

[12]  F. Petry,et al.  The digit parallel method for fast RNS to weighted number system conversion for specific moduli (2/sup k/-1,2/sup k/,2/sup k/+1) , 1997 .

[13]  Michael A. Soderstrand,et al.  Residue number system arithmetic: modern applications in digital signal processing , 1986 .

[14]  T. Srikanthan,et al.  Breaking the 2n-bit carry propagationbarrier in residue to binary conversion for the [2n-1. 2n, 2n + 1] modula set , 1998 .

[15]  Reto Zimmermann VHDL Library of Arithmetic Units , 1998 .

[16]  A. Dhurkadas Comments on "A high speed realization of a residue to binary number system converter" , 1998 .

[17]  Yuke Wang,et al.  A new algorithm for RNS decoding , 1996 .

[18]  Giuseppe Alia,et al.  Sign detection in residue arithmetic units , 1998, J. Syst. Archit..

[19]  G. Jullien,et al.  An improved residue-to-binary converter , 2000 .

[20]  S. Piestrak A high-speed realization of a residue to binary number system converter , 1995 .

[21]  S. Ge,et al.  Adaptive control of uncertain Chua's circuits , 2000 .

[22]  T. Srikanthan,et al.  Breaking the 2n-bit carry propagation barrier in residue to binary conversion for the [2/sup n/-1, 2/sup n/, 2/sup n/+1] modula set , 1998 .

[23]  P. Mohan,et al.  Comments on "Residue-to-binary converters based on new Chinese remainder theorems" , 2000 .

[24]  Graham A. Jullien,et al.  A fast and robust RNS algorithm for evaluating signs of determinants , 1998 .