New local mass relation for isobaric analogue states and isospin-nonconserving forces

In this paper a new local mass relation is constructed for isobaric analogue states of four relating neighboring nuclei. The standard deviation from a linear fit of experimental data is 20--70 keV. The systematics of the local mass relation is discussed in terms of an empirical Coulomb energy formula and the isobaric multiplet mass equation. The local relation for nuclei in the $pf$ shell is studied in the framework of the microscopic shell model. The results demonstrate the key roles played by the Coulomb interaction and an effective isospin-nonconserving nucleon-nucleon interaction in our new mass relation.

[1]  Klaus Blaum,et al.  High-precision QEC values of superallowed 0+ → 0+β-emitters 46Cr, 50Fe and 54Ni , 2017 .

[2]  A. Arima,et al.  Simple relations between masses of mirror nuclei , 2016 .

[3]  H Chen,et al.  Identification of the Lowest T =2, Jπ =0+ Isobaric Analog State in 52Co and Its Impact on the Understanding of β-Decay Properties of52Ni , 2016, 1610.09772.

[4]  S. Lenzi,et al.  Isospin-breaking interactions studied through mirror energy differences , 2015 .

[5]  Y. M. Zhao,et al.  Strong correlations of the Garvey-Kelson mass relations , 2014 .

[6]  G. Audi,et al.  Evaluated experimental isobaric analogue states from T=1/2 to T=3 and associated IMME coefficients , 2013, 1312.1521.

[7]  Ning Wang,et al.  Improved Kelson-Garvey mass relations for proton-rich nuclei , 2013, 1301.2751.

[8]  Xing Xu,et al.  The AME2016 atomic mass evaluation (II). Tables, graphs and references , 2012 .

[9]  Z. Ren,et al.  Predictions of unknown masses and their applications , 2012 .

[10]  H. Sagawa,et al.  New finite-range droplet mass model and equation-of-state parameters. , 2012, Physical review letters.

[11]  A. Arima,et al.  Description and evaluation of nuclear masses based on residual proton-neutron interactions , 2011 .

[12]  Min Liu,et al.  Further improvements on a global nuclear mass model , 2011, 1104.0066.

[13]  A. Arima,et al.  Nuclear mass relations based on systematics of proton-neutron interactions , 2010 .

[14]  A. Arima,et al.  Nuclear binding energies and empirical proton-neutron interactions , 2010 .

[15]  Min Liu,et al.  Modification of nuclear mass formula by considering isospin effects , 2010, 1001.1493.

[16]  S. Goriely,et al.  Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing. , 2009, Physical review letters.

[17]  I. Morales,et al.  The Art of Predicting Nuclear Masses , 2008 .

[18]  A. Frank,et al.  Garvey-Kelson relations and the new nuclear mass tables , 2008 .

[19]  S. Lenzi,et al.  Coulomb energy differences between high-spin states in isobaric multiplets , 2007 .

[20]  S. Goriely,et al.  Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VII. Simultaneous fits to masses and fission barriers , 2007 .

[21]  W. Nazarewicz,et al.  Empirical proton-neutron interactions and nuclear density functional theory: global, regional, and local comparisons. , 2006, Physical review letters.

[22]  R. Cakirli,et al.  Direct empirical correlation between proton-neutron interaction strengths and the growth of collectivity in nuclei. , 2006, Physical review letters.

[23]  Klaus Blaum,et al.  High-accuracy mass spectrometry with stored ions , 2006 .

[24]  D. S. Brenner,et al.  Proton-neutron interactions and the new atomic masses. , 2005, Physical review letters.

[25]  A. Frank,et al.  Nuclear masses set bounds on quantum chaos. , 2005, Physical review letters.

[26]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[27]  D. Lunney,et al.  Recent trends in the determination of nuclear masses , 2003 .

[28]  G. Martínez-Pinedo,et al.  Isobaric multiplet yrast energies and isospin nonconserving forces. , 2002, Physical review letters.

[29]  J. Duflo,et al.  Mirror displacement energies and neutron skins , 2002, nucl-th/0201081.

[30]  B. A. Brown,et al.  Proton drip-line calculations and the rp process , 2002, nucl-th/0201053.

[31]  F. Nowacki,et al.  Shell model study of the isobaric chains A=50, A=51 and A=52 , 2000, nucl-th/0012077.

[32]  B. A. Brown,et al.  Displacement energies with the Skyrme Hartree–Fock method , 2000 .

[33]  W. Ormand Mapping the proton drip line up to A = 70 , 1997, nucl-th/9701002.

[34]  Cole Bj Stability of proton-rich nuclei in the upper sd shell and lower pf shell. , 1996 .

[35]  Warner,et al.  Test of Wigner's spin-isospin symmetry from double binding energy differences. , 1995, Physical review letters.

[36]  Zuker,et al.  Microscopic mass formulas. , 1995, Physical review. C, Nuclear physics.

[37]  W. Myers,et al.  Nuclear ground state masses and deformations , 1993, nucl-th/9308022.

[38]  Brown Diproton decay of nuclei on the proton drip line. , 1991, Physical review. C, Nuclear physics.

[39]  D. S. Brenner,et al.  Empirical p-n interactions: global trends, configuration sensitivity and N=Z enhancements , 1990 .

[40]  W. Ormand,et al.  Empirical isospin-nonconserving hamiltonians for shell-model calculations , 1989 .

[41]  Peter Möller,et al.  Nuclear masses from a unified macroscopic-microscopic model , 1988 .

[42]  J. Jänecke Updated mass predictions from the Garvey-Kelson mass relations☆ , 1976 .

[43]  B. P. Eynon,et al.  Nuclidic mass relationships and mass equations , 1974 .

[44]  R. Jaffe,et al.  Set of Nuclear-Mass Relations and a Resultant Mass Table , 1969 .

[45]  J. Jaenecke Vector and Tensor Coulomb Energies , 1966 .

[46]  G. Garvey,et al.  New Nuclidic Mass Relationship , 1966 .

[47]  B. C. Carlson,et al.  Pairing Effects in Coulomb Energies and the Radii of Mirror Nuclei , 1954 .

[48]  D. R. Inglis Spin-Orbit Coupling in Li 7 and Be 7 , 1951 .

[49]  D. R. Inglis Spin-Orbit Coupling in Nuclei , 1936 .

[50]  Ormand Properties of proton drip-line nuclei at the sd-fp-shell interface. , 1996, Physical review. C, Nuclear physics.