Formation of the methyl cation by photochemistry in a protoplanetary disk

[1]  G. Wright,et al.  JWST MIRI flight performance: The Medium-Resolution Spectrometer , 2023, Astronomy & Astrophysics.

[2]  F. Terui,et al.  Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu , 2023, Science.

[3]  E. Bergin,et al.  Interstellar Heritage and the Birth Environment of the Solar System , 2023, 2301.05212.

[4]  A. Abergel,et al.  MINDS. The Detection of 13CO2 with JWST-MIRI Indicates Abundant CO2 in a Protoplanetary Disk , 2022, The Astrophysical Journal Letters.

[5]  M. Wolfire,et al.  The PhotoDissociation Region Toolbox: Software and Models for Astrophysical Analysis , 2022, The Astronomical Journal.

[6]  É. Habart,et al.  OH mid-infrared emission as a diagnostic of H2O UV photodissociation. II. Application to interstellar photodissociation regions , 2022, Astronomy & Astrophysics.

[7]  C. Joblin,et al.  Contribution of polycyclic aromatic hydrocarbon ionization to neutral gas heating in galaxies: model versus observations , 2022, Astronomy & Astrophysics.

[8]  T. Haworth,et al.  The external photoevaporation of planet-forming discs , 2022, The European Physical Journal Plus.

[9]  Collin J. Knight,et al.  PDRs4All: A JWST Early Release Science Program on Radiative Feedback from Massive Stars , 2022, Publications of the Astronomical Society of the Pacific.

[10]  E. Herbst Unusual Chemical Processes in Interstellar Chemistry: Past and Present , 2021, Frontiers in Astronomy and Space Sciences.

[11]  J. R. Martínez-Galarza,et al.  Wavelength calibration and resolving power of the JWST MIRI Medium Resolution Spectrometer , 2021, Astronomy & Astrophysics.

[12]  Toulouse,et al.  Learning mid-IR emission spectra of polycyclic aromatic hydrocarbon populations from observations. , 2019, Astronomy and astrophysics.

[13]  È. Roueff,et al.  The full infrared spectrum of molecular hydrogen , 2019, Astronomy & Astrophysics.

[14]  G. Nyman,et al.  Infrared vibrational spectra of CH3+ and its deuterated isotopologues , 2019, AIP Advances.

[15]  Zhaohuan Zhu,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral Structures in the Millimeter Continuum of the Elias 27, IM Lup, and WaOph 6 Disks , 2018, The Astrophysical Journal.

[16]  Zhaohuan Zhu,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA Maps of Protoplanetary Disks in Terms of a Dust Model , 2018, The Astrophysical Journal.

[17]  S. Schlemmer,et al.  Spectroscopy of the low-frequency vibrational modes of CH3+ isotopologues , 2018 .

[18]  F. Petit,et al.  Herschel survey and modelling of externally-illuminated photoevaporating protoplanetary disks. , 2017, Astronomy and astrophysics.

[19]  T. Lamberts,et al.  Grain Surface Models and Data for Astrochemistry , 2017, Space Science Reviews.

[20]  C. Joblin,et al.  The chemistry and spatial distribution of small hydrocarbons in UV-irradiated molecular clouds: the Orion Bar PDR , 2014, 1412.0417.

[21]  Physics,et al.  MOLECULAR LINE EMISSION FROM A PROTOPLANETARY DISK IRRADIATED EXTERNALLY BY A NEARBY MASSIVE STAR , 2013, 1303.4903.

[22]  S. Hirata,et al.  DISSOCIATIVE RECOMBINATION OF VIBRATIONALLY COLD CH+3 AND INTERSTELLAR IMPLICATIONS , 2012 .

[23]  T. Mehner,et al.  REACTIONS OF COLD TRAPPED CH+ IONS WITH SLOW H ATOMS , 2011 .

[24]  F. Ménard,et al.  Detection of CH+ emission from the disc around HD 100546 , 2011, 1104.2283.

[25]  T. Henning,et al.  Chemistry in Disks. IV. Benchmarking gas-grain chemical models with surface reactions , 2010, 1007.2302.

[26]  Geoffrey A. Blake,et al.  A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES , 2010, 1006.4189.

[27]  P. Botschwina,et al.  Threshold photoelectron spectroscopy of the methyl radical isotopomers, CH3, CH2D, CHD2 and CD3: synergy between VUV synchrotron radiation experiments and explicitly correlated coupled cluster calculations. , 2010, The journal of physical chemistry. A.

[28]  J. Goicoechea,et al.  THE CHEMISTRY OF VIBRATIONALLY EXCITED H2 IN THE INTERSTELLAR MEDIUM , 2010, 1003.1375.

[29]  T. Geballe,et al.  CONSTRAINING THE ENVIRONMENT OF CH+ FORMATION WITH CH+3 OBSERVATIONS , 2010, 1002.1315.

[30]  So Hirata,et al.  Anharmonic vibrational frequencies and vibrationally-averaged structures of key species in hydrocarbon combustion: HCO+, HCO, HNO, HOO, HOO–, CH3 +, and CH3 , 2009 .

[31]  M. Head‐Gordon,et al.  Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.

[32]  K. Menten,et al.  The distance to the Orion Nebula , 2007, 0709.0485.

[33]  J. L. Bourlot,et al.  The penetration of Far-UV radiation into molecular clouds , 2007, astro-ph/0702033.

[34]  C. Alcaraz,et al.  Rovibrational photoionization dynamics of methyl and its isotopomers studied by high-resolution photoionization and photoelectron spectroscopy. , 2006, The Journal of chemical physics.

[35]  J. L. Bourlot,et al.  A Model for Atomic and Molecular Interstellar Gas: The Meudon PDR Code , 2006, astro-ph/0602150.

[36]  Mark J. McCaughrean,et al.  Disks, Microjets, Windblown Bubbles, and Outflows in the Orion Nebula , 2000 .

[37]  L. Hillenbrand,et al.  Constraints on the Stellar/Substellar Mass Function in the Inner Orion Nebula Cluster , 2000, astro-ph/0003293.

[38]  D. B. Milligan,et al.  A selected ion flow tube study of the reactions of small CmHn+ ions with O atoms , 2000 .

[39]  E. Herbst,et al.  New H and H2 Reactions with Small Hydrocarbon Ions and Their Roles in Benzene Synthesis in Dense Interstellar Clouds , 1999 .

[40]  R. Peverall,et al.  Branching Fractions in Dissociative Recombination of CH2+ , 1998 .

[41]  A. Sternberg Chemistry in dense photon dominated regions , 1995 .

[42]  C. M. Gabrys,et al.  Infrared spectrum of CH3+ involving high rovibrationai levels , 1994 .

[43]  P. Pracna,et al.  Ab Initio Study of Linestrengths of Vibration-Rotation Transitions of Ammonia and Methyl Cations , 1993 .

[44]  David Smith The Ion Chemistry of Interstellar Clouds , 1992 .

[45]  V. Špirko,et al.  Potential energy function and rotation-vibration energy levels of CH3+ , 1991 .

[46]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[47]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[48]  M. Crofton,et al.  Infrared spectroscopy of carbo‐ions. III. ν3 band of methyl cation CH+3 , 1988 .

[49]  J. Black,et al.  Fluorescent excitation of interstellar H2 , 1987 .

[50]  J. Black,et al.  Models of interstellar clouds. I. The Zeta Ophiuchi cloud , 1977 .

[51]  N. Adams,et al.  Reactions of hydrocarbon ions with hydrogen and methane at 300 K , 1977 .

[52]  C. Western PGOPHER: A program for simulating rotational, vibrational and electronic spectra , 2017 .

[53]  J. Cernicharo,et al.  H2(v = 0,1) + C+(2P) → H+CH+ STATE-TO-STATE RATE CONSTANTS FOR CHEMICAL PUMPING MODELS IN ASTROPHYSICAL MEDIA , 2013 .

[54]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[55]  David,et al.  Gaussian basis sets for use in correlated molecular calculations . Ill . The atoms aluminum through argon , 1999 .