Theory versus practice in annealing-based quantum computing
暂无分享,去创建一个
[1] M. W. Johnson,et al. Phase transitions in a programmable quantum spin glass simulator , 2018, Science.
[2] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[3] Jeffrey Scott Vitter,et al. Algorithms and Data Structures for External Memory , 2008, Found. Trends Theor. Comput. Sci..
[4] Seth Lloyd,et al. Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation , 2007, SIAM J. Comput..
[5] Catherine C. McGeoch. A Guide to Experimental Algorithmics , 2012 .
[6] Daniel A. Lidar,et al. Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.
[7] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[8] David R. O'Hallaron,et al. Computer Systems: A Programmer's Perspective , 1991 .
[9] Aidan Roy,et al. A practical heuristic for finding graph minors , 2014, ArXiv.
[10] Mark W. Johnson,et al. Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.
[11] Zhaohui Wei,et al. A modified quantum adiabatic evolution for the Deutsch–Jozsa problem , 2006 .
[12] Daniel A. Lidar,et al. Adiabatic quantum computation , 2016, 1611.04471.
[13] Thomas Lippert,et al. Benchmarking gate-based quantum computers , 2017, Comput. Phys. Commun..
[14] Jaroslaw Adam Miszczak. Models of quantum computation and quantum programming languages , 2010, 1012.6035.
[15] Daniel A. Lidar,et al. Non-stoquastic Hamiltonians in quantum annealing via geometric phases , 2017 .
[16] D. Lidar,et al. Adiabatic quantum computation in open systems. , 2005, Physical review letters.
[17] Garrett T. Kenyon,et al. Image Classification Using Quantum Inference on the D-Wave 2X , 2018, 2018 IEEE International Conference on Rebooting Computing (ICRC).
[18] Mile Gu,et al. Encoding universal computation in the ground states of Ising lattices. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[20] Daniel A. Lidar,et al. Adiabatic quantum optimization with the wrong Hamiltonian , 2013, 1310.0529.
[21] Michael Sipser,et al. Introduction to the Theory of Computation , 1996, SIGA.
[22] Daniel A. Lidar,et al. Test-driving 1000 qubits , 2017, Quantum Science and Technology.
[23] Itay Hen,et al. Period finding with adiabatic quantum computation , 2013, 1307.6538.
[24] Rajagopal Nagarajan,et al. Simulating and Compiling Code for the Sequential Quantum Random Access Machine , 2007, QPL.
[25] David H. Wolpert,et al. What makes an optimization problem hard? , 1995, Complex..
[26] J. Biamonte,et al. Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.
[27] Catherine C. McGeoch,et al. Benchmarking a quantum annealing processor with the time-to-target metric , 2015, 1508.05087.
[28] M. W. Johnson,et al. Demonstration of a Nonstoquastic Hamiltonian in Coupled Superconducting Flux Qubits , 2019, Physical Review Applied.
[29] F. Barahona. On the computational complexity of Ising spin glass models , 1982 .
[30] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[31] N. Cerf,et al. Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.
[32] Daniel A. Lidar,et al. Defining and detecting quantum speedup , 2014, Science.
[33] Xi Chen,et al. Logistic Network Design with a D-Wave Quantum Annealer , 2019, 1906.10074.
[34] Kristel Michielsen,et al. Support vector machines on the D-Wave quantum annealer , 2019, Comput. Phys. Commun..
[35] Paul R. Cohen,et al. Using Finite Experiments to Study Asymptotic Performance , 2000, Experimental Algorithmics.
[36] Michael Jünger,et al. Performance of a Quantum Annealer for Ising Ground State Computations on Chimera Graphs , 2019, ArXiv.
[37] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[38] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[39] M. W. Johnson,et al. Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.
[40] I. Hen,et al. Temperature Scaling Law for Quantum Annealing Optimizers. , 2017, Physical review letters.
[41] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[42] Catherine C. McGeoch. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice , 2014, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice.
[43] Ryan Babbush,et al. What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.
[44] Firas Hamze,et al. Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.
[45] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[46] Daniel A. Lidar,et al. Quantum annealing correction for random Ising problems , 2014, 1408.4382.
[47] Marijn J. H. Heule,et al. SAT Competition 2018 , 2019, J. Satisf. Boolean Model. Comput..
[48] Daniel A. Lidar. Arbitrary-time error suppression for Markovian adiabatic quantum computing using stabilizer subspace codes , 2019, Physical Review A.
[49] Cong Wang,et al. Experimental evaluation of an adiabiatic quantum system for combinatorial optimization , 2013, CF '13.
[50] John Preskill,et al. Quantum Computing in the NISQ era and beyond , 2018, Quantum.
[51] Marco Lanzagorta,et al. A cross-disciplinary introduction to quantum annealing-based algorithms , 2018, 1803.03372.
[52] V. Fock,et al. Beweis des Adiabatensatzes , 1928 .
[53] Aidan Roy,et al. Fast clique minor generation in Chimera qubit connectivity graphs , 2015, Quantum Inf. Process..
[54] Daniel A. Lidar,et al. Nested quantum annealing correction at finite temperature: p -spin models , 2018, Physical Review A.
[55] Mark W. Johnson,et al. Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.
[56] Daniel A. Lidar,et al. Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.
[57] M. Amin. Searching for quantum speedup in quasistatic quantum annealers , 2015, 1503.04216.
[58] Raouf Dridi,et al. Graver Bases via Quantum Annealing with Application to Non-Linear Integer Programs , 2019, ArXiv.
[59] Umesh Vazirani,et al. Is Quantum Mechanics Falsifiable? A computational perspective on the foundations of Quantum Mechanics , 2012, 1206.3686.
[60] Daniel A. Lidar,et al. Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing , 2017, Physical Review X.