Theory versus practice in annealing-based quantum computing

Abstract This paper introduces basic concepts of annealing-based quantum computing, also known as adiabatic quantum computing (AQC) and quantum annealing (QA), and surveys what is known about this novel computing paradigm. Extensive empirical research on physical quantum annealing processers built by D-Wave Systems has exposed many interesting features and properties. However, because of longstanding differences between abstract and empirical approaches to the study of computational performance, much of this work may not be considered relevant to questions of interest to complexity theory; by the same token, several theoretical results in quantum computing may be considered irrelevant to practical experience. To address this communication gap, this paper proposes models of computation and of algorithms that lie on a scale of instantiation between pencil-and-paper abstraction and physical device. Models at intermediate points on these scales can provide a common language, allowing researchers from both ends to communicate and share their results. The paper also gives several examples of common terms that have different technical meanings in different regions of this highly multidisciplinary field, which can create barriers to effective communication across disciplines.

[1]  M. W. Johnson,et al.  Phase transitions in a programmable quantum spin glass simulator , 2018, Science.

[2]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[3]  Jeffrey Scott Vitter,et al.  Algorithms and Data Structures for External Memory , 2008, Found. Trends Theor. Comput. Sci..

[4]  Seth Lloyd,et al.  Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation , 2007, SIAM J. Comput..

[5]  Catherine C. McGeoch A Guide to Experimental Algorithmics , 2012 .

[6]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[7]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[8]  David R. O'Hallaron,et al.  Computer Systems: A Programmer's Perspective , 1991 .

[9]  Aidan Roy,et al.  A practical heuristic for finding graph minors , 2014, ArXiv.

[10]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[11]  Zhaohui Wei,et al.  A modified quantum adiabatic evolution for the Deutsch–Jozsa problem , 2006 .

[12]  Daniel A. Lidar,et al.  Adiabatic quantum computation , 2016, 1611.04471.

[13]  Thomas Lippert,et al.  Benchmarking gate-based quantum computers , 2017, Comput. Phys. Commun..

[14]  Jaroslaw Adam Miszczak Models of quantum computation and quantum programming languages , 2010, 1012.6035.

[15]  Daniel A. Lidar,et al.  Non-stoquastic Hamiltonians in quantum annealing via geometric phases , 2017 .

[16]  D. Lidar,et al.  Adiabatic quantum computation in open systems. , 2005, Physical review letters.

[17]  Garrett T. Kenyon,et al.  Image Classification Using Quantum Inference on the D-Wave 2X , 2018, 2018 IEEE International Conference on Rebooting Computing (ICRC).

[18]  Mile Gu,et al.  Encoding universal computation in the ground states of Ising lattices. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Daniel A. Lidar,et al.  Adiabatic quantum optimization with the wrong Hamiltonian , 2013, 1310.0529.

[21]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[22]  Daniel A. Lidar,et al.  Test-driving 1000 qubits , 2017, Quantum Science and Technology.

[23]  Itay Hen,et al.  Period finding with adiabatic quantum computation , 2013, 1307.6538.

[24]  Rajagopal Nagarajan,et al.  Simulating and Compiling Code for the Sequential Quantum Random Access Machine , 2007, QPL.

[25]  David H. Wolpert,et al.  What makes an optimization problem hard? , 1995, Complex..

[26]  J. Biamonte,et al.  Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.

[27]  Catherine C. McGeoch,et al.  Benchmarking a quantum annealing processor with the time-to-target metric , 2015, 1508.05087.

[28]  M. W. Johnson,et al.  Demonstration of a Nonstoquastic Hamiltonian in Coupled Superconducting Flux Qubits , 2019, Physical Review Applied.

[29]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[30]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[31]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[32]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[33]  Xi Chen,et al.  Logistic Network Design with a D-Wave Quantum Annealer , 2019, 1906.10074.

[34]  Kristel Michielsen,et al.  Support vector machines on the D-Wave quantum annealer , 2019, Comput. Phys. Commun..

[35]  Paul R. Cohen,et al.  Using Finite Experiments to Study Asymptotic Performance , 2000, Experimental Algorithmics.

[36]  Michael Jünger,et al.  Performance of a Quantum Annealer for Ising Ground State Computations on Chimera Graphs , 2019, ArXiv.

[37]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[38]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[39]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[40]  I. Hen,et al.  Temperature Scaling Law for Quantum Annealing Optimizers. , 2017, Physical review letters.

[41]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[42]  Catherine C. McGeoch Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice , 2014, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice.

[43]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[44]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.

[45]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[46]  Daniel A. Lidar,et al.  Quantum annealing correction for random Ising problems , 2014, 1408.4382.

[47]  Marijn J. H. Heule,et al.  SAT Competition 2018 , 2019, J. Satisf. Boolean Model. Comput..

[48]  Daniel A. Lidar Arbitrary-time error suppression for Markovian adiabatic quantum computing using stabilizer subspace codes , 2019, Physical Review A.

[49]  Cong Wang,et al.  Experimental evaluation of an adiabiatic quantum system for combinatorial optimization , 2013, CF '13.

[50]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[51]  Marco Lanzagorta,et al.  A cross-disciplinary introduction to quantum annealing-based algorithms , 2018, 1803.03372.

[52]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[53]  Aidan Roy,et al.  Fast clique minor generation in Chimera qubit connectivity graphs , 2015, Quantum Inf. Process..

[54]  Daniel A. Lidar,et al.  Nested quantum annealing correction at finite temperature: p -spin models , 2018, Physical Review A.

[55]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.

[56]  Daniel A. Lidar,et al.  Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.

[57]  M. Amin Searching for quantum speedup in quasistatic quantum annealers , 2015, 1503.04216.

[58]  Raouf Dridi,et al.  Graver Bases via Quantum Annealing with Application to Non-Linear Integer Programs , 2019, ArXiv.

[59]  Umesh Vazirani,et al.  Is Quantum Mechanics Falsifiable? A computational perspective on the foundations of Quantum Mechanics , 2012, 1206.3686.

[60]  Daniel A. Lidar,et al.  Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing , 2017, Physical Review X.