Strained Ge channel p-type metal–oxide–semiconductor field-effect transistors grown on Si1−xGex/Si virtual substrates

We have fabricated strained Ge channel p-type metal–oxide–semiconductor field-effect transistors (p-MOSFETs) on Si0.3Ge0.7 virtual substrates. The poor interface between silicon dioxide (SiO2) and the Ge channel was eliminated by capping the strained Ge layer with a relaxed, epitaxial silicon surface layer grown at 400 °C. Ge p-MOSFETs fabricated from this structure show a hole mobility enhancement of nearly eight times that of co-processed bulk Si devices, and the Ge MOSFETs have a peak effective mobility of 1160 cm2/V s. These MOSFETs demonstrate the possibility of creating a surface channel enhancement-mode MOSFET with buried channel-like transport characteristics.

[1]  J. Welser,et al.  Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors , 1994, IEEE Electron Device Letters.

[2]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[3]  E. Fitzgerald,et al.  Very high mobility two‐dimensional hole gas in Si/GexSi1−x/Ge structures grown by molecular beam epitaxy , 1993 .

[4]  D. Tweet,et al.  Factors determining the composition of strained GeSi layers grown with disilane and germane , 1994 .

[5]  High performance 0.25 [micro sign]m p-type Ge/SiGe MODFETs , 1998 .

[6]  Don Monroe,et al.  Relaxed GexSi1−x structures for III–V integration with Si and high mobility two‐dimensional electron gases in Si , 1992 .

[7]  Xie,et al.  Semiconductor surface roughness: Dependence on sign and magnitude of bulk strain. , 1994, Physical review letters.

[8]  Ulf Konig,et al.  High hole mobility in Si0.17Ge0.83 channel metal–oxide–semiconductor field-effect transistors grown by plasma-enhanced chemical vapor deposition , 2000 .

[9]  T. Jackson,et al.  Gate-Self-Aligned N-Channel and P-Channel Germanium Mosfets , 1991, [1991] 49th Annual Device Research Conference Digest.

[10]  Thomas A. Langdo,et al.  Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing , 1998 .

[11]  Eugene A. Fitzgerald,et al.  Dislocations in strained-layer epitaxy : theory, experiment, and applications , 1991 .

[12]  J. Welser,et al.  Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs , 1995, Proceedings of International Electron Devices Meeting.

[13]  Junichi Murota,et al.  High-mobility strained-Si PMOSFET's , 1996 .

[14]  R. Hammond,et al.  Extremely high transconductance Ge/Si/sub 0.4/Ge/sub 0.6/ p-MODFET's grown by UHV-CVD , 2000, IEEE Electron Device Letters.

[15]  K. Hofmann,et al.  Fabrication of high-mobility Ge p-channel MOSFETs on Si substrates , 1999 .

[16]  B. Meyerson,et al.  Oxidation studies of SiGe , 1989 .

[17]  Jurgen Michel,et al.  Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates , 1991 .

[18]  F. Schaffler,et al.  p-type Ge-channel MODFETs with high transconductance grown on Si substrates , 1993, IEEE Electron Device Letters.

[19]  Steven A. Ringel,et al.  Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates , 2000 .