Role of scalar a 0 ( 980 ) in the single Cabibbo suppressed process D + → π + π 0 η

Takingintoaccount that thescalar a 0 ( 980 ) canbe dynamically generated from the pseudoscalar-pseudoscalar interaction within the chiral unitary approach, we have studied the single Cabibbo suppressed process D + → π + π 0 η . We find clear peaks of a 0 ( 980 ) + and a 0 ( 980 ) 0 in the π + η and π 0 η invariant mass distributions, respectively. The predicted Dalitz plots of D + → π + π 0 η also manifest the significant signals for a 0 ( 980 ) + and a 0 ( 980 ) 0 states. The uncertainties of the results due to the free parameters are also discussed. Our study shows that the process D + → π + π 0 η can be used to explore the nature of the scalar a 0 ( 980 ) , thus we encourage the experimental physicists to measure this reaction with more precision.

[1]  Anita,et al.  Observation of D+→ηηπ+ and improved measurement of D0(+)→ηπ+π−(0) , 2020 .

[2]  K. Cho,et al.  Dalitz analysis of D0→K−π+η decays at Belle , 2020, Physical Review D.

[3]  Hiwa A. Ahmed,et al.  Study the molecular nature of σ , f0(980) , and a0(980) states , 2020, 2001.08141.

[4]  R. Molina,et al.  Theoretical interpretation of the Ds+→π+π0η decay and the nature of a0(980) , 2019, Physics Letters B.

[5]  B. Ke,et al.  Resonant a 0 ( 980 ) state in triangle rescattering D + s → π + π 0 η decays , 2020 .

[6]  Hua-Xing Chen,et al.  Triangle singularity in the J/ψ → K^+ K^- f_0(980)(a_0(980)) decays , 2019 .

[7]  C. Geng,et al.  Three-body charmed baryon decays with SU(3) flavor symmetry , 2018, Physical Review D.

[8]  E. Oset,et al.  Triangle singularity in τ − → ν τ π − f 0 ð 980 Þ ( a 0 ð 980 Þ ) decays , 2019 .

[9]  E. Oset,et al.  The B + → J /ψω K + reaction and D ∗ ¯D ∗ molecular states , 2018 .

[10]  J. M. Dias,et al.  Disclosing D ∗ D̄ ∗ molecular states in the B − c → π − J / ψω decay , 2018 .

[11]  Guan-Ying Wang,et al.  Strong decays of the higher isovector scalar mesons , 2017, 1712.10180.

[12]  J. A. Oller,et al.  Chiral study of the a 0 ( 980 ) resonance and πη scattering phase shifts in light of a recent lattice simulation , 2017 .

[13]  Scoap The low lying scalar resonances in the D 0 decays into Ks0 and f 0 (500), f 0 (980), a 0 (980) , 2016 .

[14]  Hua-Xing Chen,et al.  Weak decays of heavy hadrons into dynamically generated resonances , 2016, 1601.03972.

[15]  Hua-Xing Chen,et al.  Hidden-charm pentaquark state in $\Lambda^0_b \to J/\psi p \pi^-$ decay , 2015, 1512.01959.

[16]  E. Oset,et al.  f 0 ( 500 ) , f 0 ( 980 ) , and a 0 ( 980 ) production in the χ c 1 → ηπ + π − reaction , 2016 .

[17]  Hai-Yang Cheng Charmed baryons circa 2015 , 2015, 1508.07233.

[18]  W. Liang,et al.  B̄ 0 , B − and B̄ 0 s decays into J / ψ and K K̄ or πη , 2015 .

[19]  E. Oset,et al.  Unitarized Chiral Perturbation Theory in a finite volume: Scalar meson sector , 2011, 1107.3988.

[20]  M. Vacas,et al.  Dynamically generated open and hidden charm meson systems , 2006, hep-ph/0612179.

[21]  J. A. Oller,et al.  Chiral dynamics in the presence of bound states: kaon–nucleon interactions revisited , 2000, hep-ph/0011146.

[22]  J. A. Oller,et al.  Chiral unitary approach to meson meson and meson - baryon interactions and nuclear applications , 2000, hep-ph/0002193.

[23]  J. A. Oller,et al.  N/D description of two meson amplitudes and chiral symmetry , 1998, hep-ph/9809337.

[24]  J. A. Oller,et al.  Chiral symmetry amplitudes in the S-wave isoscalar and isovector channels and the σ, f0(980),a0(980)scalar mesons , 1998 .

[25]  E. O. Báguena,et al.  Chiral symmetry amplitudes in the S-wave isoscalar and isovector channels and the sigma, f(0)(980), a(0)(980) scalar mesons , 1997 .

[26]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[27]  V. Bernard,et al.  Chiral dynamics in nucleons and nuclei , 1995, hep-ph/9501384.

[28]  Cheng,et al.  Nonleptonic weak decays of charmed baryons. , 1992, Physical review. D, Particles and fields.

[29]  Heinrich Leutwyler,et al.  Chiral perturbation theory to one loop , 1984 .

[30]  σ , κ , f 0 (980) and a 0 (980) , 2022 .