Noncommutative symmetric functions

This paper presents a noncommutative theory of symmetric functions, based on the notion of quasi-determinant. We begin with a formal theory, corresponding to the case of symmetric functions in an infinite number of independent variables. This allows us to endow the resulting algebra with a Hopf structure, which leads to a new method for computing in descent algebras. It also gives unified reinterpretation of a number of classical constructions. Next, we study the noncommutative analogs of symmetric polynomials. One arrives at different constructions, according to the particular kind of application under consideration. For example, when a polynomial with noncommutative coefficients in one central variable is decomposed as a product of linear factors, the roots of these factors differ from those of the expanded polynomial. Thus, according to whether one is interested in the construction of a polynomial with given roots or in the expansion of a product of linear factors, one has to consider two distinct specializations of the formal symmetric functions. A third type appears when one looks for a noncommutative generalization of applications related to the notion of characteristic polynomial of a matrix. This construction can be applied, for instance, to the noncommutative matrices formed by the generators of the universal enveloping algebra $U(gl_n)$ or of

[1]  Amitai Regev,et al.  Hook young diagrams with applications to combinatorics and to representations of Lie superalgebras , 1987 .

[2]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[3]  A. Klyachko Lie elements in the tensor algebra , 1974 .

[4]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[5]  A. V. Zelevinsky,et al.  Representations of Finite Classical Groups: A Hopf Algebra Approach , 1981 .

[6]  F. Patras Construction géométrique des idempotents eulériens. Filtration des groupes de polytopes et des groupes d'homologie de Hochschild , 1991 .

[7]  I. Gel'fand,et al.  Determinants of matrices over noncommutative rings , 1991 .

[8]  S. Graffi,et al.  Matrix moment methods in perturbation theory, boson quantum field models, and anharmonic oscillators , 1974 .

[9]  Adriano M. Garsia,et al.  A decomposition of Solomon's descent algebra , 1989 .

[10]  Wyman Fair Noncommutative Continued Fractions , 1971 .

[11]  P. Wynn,et al.  Continued fractions whose coefficients obey a non-commutative law of multiplication , 1963 .

[13]  Murray Gerstenhaber,et al.  A hodge-type decomposition for commutative algebra cohomology , 1987 .

[14]  V. Tarasov,et al.  Yangians and Gelfand-Zetlin Bases , 1993, hep-th/9302102.

[15]  B. Tsygan,et al.  Additive $K$-theory. K$-theory, arithmetic and geometry , 1987 .

[16]  H. O. Foulkes,et al.  Eulerian numbers, Newcomb's problem and representations of symmetric groups , 1980, Discret. Math..

[17]  J. Shaw Combinatory Analysis , 1917, Nature.

[18]  D. Krob,et al.  Minor identities for quasi-determinants and quantum determinants , 1994 .

[19]  D. E. Littlewood,et al.  The Kronecker Product of Symmetric Group Representations , 1956 .

[20]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[21]  T. Lam,et al.  Vandermonde and Wronskian matrices over division rings , 1988 .

[22]  Désiré André,et al.  Sur les permutations alternées , 1881 .

[23]  J. Thibon,et al.  A Hopf-Algebra Approach to Inner Plethysm , 1994 .

[24]  Kuo-Tsai Chen,et al.  Iterated Integrals of Differential Forms and Loop Space Homology , 1973 .

[25]  H. O. Foulkes Tangent and secant numbers and representations of symmetric groups , 1976, Discret. Math..

[26]  Kuo-Tsai Chen,et al.  Iterated Integrals and Exponential Homomorphisms , 1954 .

[27]  Kuo-Tsai Chen,et al.  Integration of Paths, Geometric Invariants and a Generalized Baker- Hausdorff Formula , 1957 .

[28]  I. Gessel Multipartite P-partitions and inner products of skew Schur functions , 1983 .

[29]  Ira M. Gessel,et al.  Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.

[30]  A. Lascoux Inversion des matrices de Hankel , 1990 .

[31]  Ivan Cherednik,et al.  A new interpretation of Gelfand-Tzetlin bases , 1987 .

[32]  N. Bose,et al.  Matrix Stieltjes Series and Network Models , 1983 .

[33]  M. Barr Harrison homology, Hochschild homology and triples☆☆☆ , 1968 .

[34]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[35]  Jean-Yves Thibon,et al.  Hopf Algebras of Symmetric Functions and Tensor Products of Symmetric Group Representations , 1991, Int. J. Algebra Comput..

[36]  G. Cauchon,et al.  Malcev-Neumann series on the free group and questions of rationality , 1992 .

[37]  R. Howe,et al.  Remarks on classical invariant theory , 1989 .

[38]  Ladnor Geissinger Hopf algebras of symmetric functions and class functions , 1977 .

[39]  I. Gel'fand,et al.  A theory of noncommutative determinants and characteristic functions of graphs , 1992 .

[40]  Adriano M. Garsia,et al.  Combinatorics of the Free Lie Algebra and the Symmetric Group , 1990 .

[41]  M. Gerstenhaber,et al.  The shuffle bialgebra and the cohomology of commutative algebras , 1991 .

[42]  Margarete C. Wolf,et al.  Symmetric functions of non-commutative elements , 1936 .

[43]  Daniel Krob,et al.  Some Examples of Formal Series Used in Non-Commutative Algebra , 1991, Theoretical Computer Science.

[44]  D. P. Zhelobenko Compact Lie Groups and Their Representations , 1973 .

[45]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[46]  Louis Solomon,et al.  A Mackey formula in the group ring of a Coxeter group , 1976 .

[47]  Alain Lascoux,et al.  Ribbon Schur Functions , 1988, Eur. J. Comb..

[48]  Richard Brauer,et al.  Theory of group characters , 1979 .