A highly miniaturized satellite payload based on a spatial heterodyne spectrometer for atmospheric temperature measurements in the mesosphere and lower thermosphere

Abstract. A highly miniaturized limb sounder for the observation of the O2 A-band to derive temperatures in the mesosphere and lower thermosphere is presented. The instrument consists of a monolithic spatial heterodyne spectrometer (SHS), which is able to resolve the rotational structure of the R-branch of that band. The relative intensities of the emission lines follow a Boltzmann distribution and the ratio of the lines can be used to derive the kinetic temperature. The SHS operates at a Littrow wavelength of 761.8 nm and heterodynes a wavelength regime between 761.9 and 765.3 nm with a resolving power of about 8000 considering apodization effects. The size of the SHS is 38 × 38 × 27 mm3 and its acceptance angle is ±5∘. It has an etendue of 0.01 cm2 sr. Complemented by front optics with an acceptance angle of ±0.65∘ and detector optics, the entire optical system fits into a volume of about 1.5 L. This allows us to fly this instrument on a 3- or 6-unit CubeSat. The vertical field of view of the instrument is about 60 km at the Earth's limb when operated in a typical low Earth orbit. Integration times to obtain an entire altitude profile of nighttime temperatures are on the order of 1 min for a vertical resolution of 1.5 km and a random noise level of about 1.5 K. Daytime integration times are 1 order of magnitude shorter. This work presents the design parameters of the optics and a radiometric assessment of the instrument. Furthermore, it gives an overview of the required characterization and calibration steps. This includes the characterization of image distortions in the different parts of the optics, visibility, and phase determination as well as flat fielding.

[1]  Martin Riese,et al.  The CRISTA‐2 mission , 2002 .

[2]  Spectroscopy Correction of phase distortion in spatial heterodyne spectroscopy , 2004 .

[3]  C. Englert,et al.  Flatfielding in spatial heterodyne spectroscopy. , 2006, Applied optics.

[4]  Fred L. Roesler,et al.  Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium , 2001, Optics + Photonics.

[5]  A. Bourassa,et al.  Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra , 2010 .

[6]  P. Bernath The Atmospheric Chemistry Experiment (ACE) , 2017 .

[7]  R. R. Laher,et al.  The O2 atmospheric 0‐0 band and related emissions at night from Spacelab 1 , 1985 .

[8]  Andrew W. Fitzgibbon,et al.  Simultaneous linear estimation of multiple view geometry and lens distortion , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  A. F. Hildebrandt,et al.  The 5577 A airglow emission mechanism , 1961 .

[10]  Manuel López-Puertas,et al.  Analysis of OI-557.7 nm, NaD, OH(6-2) and O2(1∑g+)(0–1) nightglow emissions from ground-based observations , 1985 .

[11]  Ronald J. Oliversen,et al.  Applications of reflective spatial heterodyne spectroscopy to UV exploration in the solar system , 2004, SPIE Astronomical Telescopes + Instrumentation.

[12]  John W. Meriwether,et al.  A review of the photochemistry of selected nightglow emissions from the mesopause , 1989 .

[13]  Fred L. Roesler,et al.  Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths , 1992 .

[14]  Barham W. Smith,et al.  Imaging spatial heterodyne spectroscopy: theory and practice , 1999, Defense, Security, and Sensing.

[15]  C. Englert,et al.  Spatial Heterodyne Imager for Mesospheric Radicals on STPSat-1 , 2010 .

[16]  D. E. Burch,et al.  Strengths, Widths, and Shapes of the Oxygen Lines near 13,100 cm(-1) (7620 A). , 1969, Applied optics.

[17]  Paul B. Hays,et al.  Remote sensing of mesospheric temperature and O2(1Σ) band volume emission rates with the high‐resolution Doppler imager , 1998 .

[18]  Fred L. Roesler,et al.  Spatial heterodyne spectroscopy: a novel interferometric technique for ground-based and space astronomy , 1990, Astronomical Telescopes and Instrumentation.

[19]  Geshi Tang,et al.  A highly miniaturized satellite payload based on a spatial heterodyne spectrometer for atmospheric temperature measurements in the mesosphere and lower thermosphere , 2018, Atmospheric Measurement Techniques.

[20]  P. Connes,et al.  Spectromètre interférentiel à sélection par l'amplitude de modulation , 1958 .

[21]  Gordon G. Shepherd,et al.  Wide-Angle Michelson Interferometer for Measuring Doppler Line Widths* , 1966 .

[22]  T. Slanger,et al.  Energetic oxygen in the upper atmosphere and the laboratory. , 2003, Chemical reviews.

[23]  Peter Barthol,et al.  CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere - CRISTA , 1999, Optical Remote Sensing of the Atmosphere.

[24]  Joseph J. Tansock,et al.  Overview of the SABER experiment and preliminary calibration results , 1999, Optics & Photonics.

[25]  Alessandro Golkar,et al.  CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions , 2017 .

[26]  Fred L. Roesler An Overview of the SHS Technique and Applications , 2007 .

[27]  M. Ern,et al.  Tomographic reconstruction of atmospheric gravity wave parameters from airglow observations , 2017 .

[28]  James M. Russell,et al.  An overview of the halogen occultation experiment (HALOE) , 1994 .

[29]  Nigel G. Douglas,et al.  HETERODYNED HOLOGRAPHIC SPECTROSCOPY , 1997 .

[30]  Fred L. Roesler,et al.  Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning , 1990, Other Conferences.

[31]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[32]  Pierre V. Villeneuve,et al.  Analysis and system design framework for infrared spatial heterodyne spectrometers , 1999, Defense, Security, and Sensing.

[33]  T. Clarmann,et al.  MIPAS: an instrument for atmospheric and climate research , 2007 .

[34]  Michael Feldman Analytic Signal Representation , 2011 .

[35]  W. Gault,et al.  18. Wind Imaging Interferometer on NASA's Upper Atmosphere Research Satellite , 2015 .

[36]  Fabien Dupont,et al.  The Spatial Heterodyne Observations of Water (SHOW) Instrument for High Resolution Profiling in the Upper Troposphere and Lower Stratosphere , 2016 .

[37]  I. Mcdade,et al.  The excitation of O(1S) and O2 bands in the nightglow: a brief review and preview , 1986 .

[38]  John Harlander,et al.  Evaluation of payload performance for a sounding rocket vacuum ultraviolet spatial heterodyne spectrometer to observe C IV lambdalambda1550 emissions from the Cygnus Loop. , 2010, Applied optics.

[39]  Jean-Claude Diels,et al.  Concerning the Spatial Heterodyne Spectrometer. , 2016, Optics express.